Protein quality control systems in hypertrophic cardiomyopathy: pathogenesis and treatment potential

[1] Makavos G, Kairis C, Tselegkidi ME, et al. Hypertrophic cardiomyopathy: an updated review on diagnosis, prognosis, and treatment. Heart Fail Rev 2019; 24: 439−459. doi: 10.1007/s10741-019-09775-4 [2] Wang B, Wang J, Wang LF, et al. Genetic analysis of monoallelic double MYH7 mutations responsible for familial hypertrophic cardiomyopathy. Mol Med Rep 2019; 20: 5229−5238. doi: 10.3892/mmr.2019.10754 [3] Ommen SR, Mital S, Burke MA, et al. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2020; 142: e533−e557. doi: 10.1161/CIR.0000000000000938 [4] Tyska MJ, Hayes E, Giewat M, et al. Single-molecule mechanics of R403Q cardiac myosin isolated from the mouse model of familial hypertrophic cardiomyopathy. Circ Res 2000; 86: 737−744. doi: 10.1161/01.RES.86.7.737 [5] Maron BJ. Clinical course and management of hypertrophic cardiomyopathy. N Engl J Med 2018; 379: 1977. doi: 10.1056/NEJMc1812159 [6] Parbhudayal RY, Garra AR, Götte MJW, et al. Variable cardiac myosin binding protein-C expression in the myofilaments due to MYBPC3 mutations in hypertrophic cardiomyopathy. J Mol Cell Cardiol 2018; 123: 59−63. doi: 10.1016/j.yjmcc.2018.08.023 [7] Burke MA, Cook SA, Seidman JG, et al. Clinical and mechanistic insights into the genetics of cardiomyopathy. J Am Coll Cardiol 2016; 68: 2871−2886. doi: 10.1016/j.jacc.2016.08.079 [8] Yadav K, Yadav A, Vashistha P, et al. Protein misfolding diseases and therapeutic approaches. Curr Protein Pept Sci 2019; 20: 1226−1245. doi: 10.2174/1389203720666190610092840 [9] Dill KA, MacCallum JL. The protein-folding problem, 50 years on. Science 2012; 338: 1042−1046. doi: 10.1126/science.1219021 [10] Ellis RJ. Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr Opin Struct Biol 2001; 11: 114−119. doi: 10.1016/S0959-440X(00)00172-X [11] Turner GC, Varshavsky A. Detecting and measuring cotranslational protein degradation in vivo. Science 2000; 289: 2117−2220. doi: 10.1126/science.289.5487.2117 [12] Martin TG, Kirk JA. Under construction: the dynamic assembly, maintenance, and degradation of the cardiac sarcomere. J Mol Cell Cardiol 2020; 148: 89−102. doi: 10.1016/j.yjmcc.2020.08.018 [13] Saibil H. Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol 2013; 14: 630−642. doi: 10.1038/nrm3658 [14] Barral JM, Hutagalung AH, Brinker A, et al. Role of the myosin assembly protein UNC-45 as a molecular chaperone for myosin. Science 2002; 295: 669−671. doi: 10.1126/science.1066648 [15] Scheufler C, Brinker A, Bourenkov G, et al. Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell 2000; 101: 199−210. doi: 10.1016/S0092-8674(00)80830-2 [16] Marston S, Copeland O, Jacques A, et al. Evidence from human myectomy samples that MYBPC3 mutations cause hypertrophic cardiomyopathy through haploinsufficiency. Circ Res 2009; 105: 219−222. doi: 10.1161/CIRCRESAHA.109.202440 [17] Just S, Meder B, Berger IM, et al. The myosin-interacting protein SMYD1 is essential for sarcomere organization. J Cell Sci 2011; 124: 3127−3136. doi: 10.1242/jcs.084772 [18] Ono Y, Sorimachi H. Calpains: an elaborate proteolytic system. Biochim Biophys Acta 2012; 1824: 224−236. doi: 10.1016/j.bbapap.2011.08.005 [19] Lecker SH, Goldberg AL, Mitch WE. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol 2006; 17: 1807−1819. doi: 10.1681/ASN.2006010083 [20] Henning RH, Brundel BJJM. Proteostasis in cardiac health and disease. Nat Rev Cardiol 2017; 14: 637−653. doi: 10.1038/nrcardio.2017.89 [21] Willis MS, Townley-Tilson WH, Kang EY, et al. Sent to destroy: the ubiquitin proteasome system regulates cell signaling and protein quality control in cardiovascular development and disease. Circ Res 2010; 106: 463−478. doi: 10.1161/CIRCRESAHA.109.208801 [22] Ulbricht A, Gehlert S, Leciejewski B, et al. Induction and adaptation of chaperone-assisted selective autophagy CASA in response to resistance exercise in human skeletal muscle. Autophagy 2015; 11: 538−546. doi: 10.1080/15548627.2015.1017186 [23] Taneike M, Yamaguchi O, Nakai A, et al. Inhibition of autophagy in the heart induces age-related cardiomyopathy. Autophagy 2010; 6: 600−606. doi: 10.4161/auto.6.5.11947 [24] [25] Li J, Qian X, Sha B. Heat shock protein 40: structural studies and their functional implications. Protein Pept Lett 2009; 16: 606−612. doi: 10.2174/092986609788490159 [26] Vang S, Corydon TJ, Børglum AD, et al. Actin mutations in hypertrophic and dilated cardiomyopathy cause inefficient protein folding and perturbed filament formation. FEBS J 2005; 272: 2037−2049. doi: 10.1111/j.1742-4658.2005.04630.x [27] Treiber A, Morand O, Clozel M. The pharmacokinetics and tissue distribution of the glucosylceramide synthase inhibitor miglustat in the rat. Xenobiotica 2007; 37: 298−314. doi: 10.1080/00498250601094543 [28] Bu H, Ding Y, Li J, et al. Inhibition of mTOR or MAPK ameliorates vmhcl/myh7 cardiomyopathy in zebrafish. JCI Insight 2021; 6: e154215. doi: 10.1172/jci.insight.154215 [29] Martin TG, Myers VD, Dubey P, et al. Cardiomyocyte contractile impairment in heart failure results from reduced BAG3-mediated sarcomeric protein turnover. Nat Commun 2021; 12: 2942. doi: 10.1038/s41467-021-23272-z

留言 (0)

沒有登入
gif