Critical role of mitogen-inducible gene 6 in restraining endothelial cell permeability to maintain vascular homeostasis

Aird WC (2007) Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100:158–173. https://doi.org/10.1161/01.RES.0000255691.76142.4a

CAS  PubMed  Google Scholar 

Anastasi S, Lamberti D, Alemà S, Segatto O (2016) Regulation of the ErbB network by the MIG6 feedback loop in physiology, tumor suppression and responses to oncogene-targeted therapeutics. Semin Cell Dev Biol 50:115–124. https://doi.org/10.1016/j.semcdb.2015.10.001

CAS  PubMed  Google Scholar 

Bates DO (2010) Vascular endothelial growth factors and vascular permeability. Cardiovasc Res 87:262–271. https://doi.org/10.1093/cvr/cvq105

CAS  PubMed  PubMed Central  Google Scholar 

Bellini M, Pest MA, Miranda-Rodrigues M, Qin L, Jeong J-W, Beier F (2020) Overexpression of MIG-6 in the cartilage induces an osteoarthritis-like phenotype in mice. Arthritis Res Ther 22:119. https://doi.org/10.1186/s13075-020-02213-z

CAS  PubMed  PubMed Central  Google Scholar 

Boulanger CM (2016) Endothelium. Arterioscler Thromb Vasc Biol 36:e26-31. https://doi.org/10.1161/atvbaha.116.306940

PubMed  Google Scholar 

Burstein ES, Hesterberg DJ, Gutkind JS, Brann MR, Currier EA, Messier TL (1998) The ras-related GTPase rac1 regulates a proliferative pathway selectively utilized by G-protein coupled receptors. Oncogene 17:1617–1623. https://doi.org/10.1038/sj.onc.1202067

CAS  PubMed  Google Scholar 

Chen D, Simons M (2021) Emerging roles of PLCγ1 in endothelial biology. Sci Signal 14:6612. https://doi.org/10.1126/scisignal.abc6612

CAS  Google Scholar 

Claesson-Welsh L, Dejana E, McDonald DM (2021) Permeability of the endothelial barrier: identifying and reconciling controversies. Trends Mol Med 27:314–331. https://doi.org/10.1016/j.molmed.2020.11.006

CAS  PubMed  Google Scholar 

Dalal PJ, Muller WA, Sullivan DP (2020) Endothelial cell calcium signaling during barrier function and inflammation. Am J Pathol 190:535–542. https://doi.org/10.1016/j.ajpath.2019.11.004

CAS  PubMed  PubMed Central  Google Scholar 

Descot A, Hoffmann R, Shaposhnikov D, Reschke M, Ullrich A, Posern G (2009) Negative regulation of the EGFR-MAPK cascade by actin-MAL-mediated Mig6/Errfi-1 induction. Mol Cell 35:291–304. https://doi.org/10.1016/j.molcel.2009.07.015

CAS  PubMed  Google Scholar 

Di Lorenzo A, Lin MI, Murata T, Landskroner-Eiger S, Schleicher M, Kothiya M, Iwakiri Y, Yu J, Huang PL, Sessa WC (2013) eNOS-derived nitric oxide regulates endothelial barrier function through VE-cadherin and Rho GTPases. J Cell Sci 126:5541–5552. https://doi.org/10.1242/jcs.115972

CAS  PubMed  PubMed Central  Google Scholar 

Dragoni S, Caridi B, Karatsai E, Burgoyne T, Sarker MH, Turowski P (2021) AMP-activated protein kinase is a key regulator of acute neurovascular permeability. J Cell Sci 134:jcs253179. https://doi.org/10.1242/jcs.253179

CAS  PubMed  PubMed Central  Google Scholar 

Duong CN, Vestweber D (2020) Mechanisms ensuring endothelial junction integrity beyond VE-cadherin. Front Physiol 11:519. https://doi.org/10.3389/fphys.2020.00519

PubMed  PubMed Central  Google Scholar 

Dvorak HF (2019) Tumors: wounds that do not heal-a historical perspective with a focus on the fundamental roles of increased vascular permeability and clotting. Semin Thromb Hemost 45:576–592. https://doi.org/10.1055/s-0039-1687908

CAS  PubMed  Google Scholar 

Ferby I, Reschke M, Kudlacek O, Knyazev P, Pantè G, Amann K, Sommergruber W, Kraut N, Ullrich A, Fässler R, Klein R (2006) Mig6 is a negative regulator of EGF receptor-mediated skin morphogenesis and tumor formation. Nat Med 12:568–573. https://doi.org/10.1038/nm1401

CAS  PubMed  Google Scholar 

Flentje A, Kalsi R, Monahan TS (2019) Small GTPases and their role in vascular disease. Int J Mol Sci 20:917. https://doi.org/10.3390/ijms20040917

CAS  PubMed Central  Google Scholar 

Hackel Peter O, Gishizky M, Ullrich A (2001) Mig-6 is a negative regulator of the epidermal growth factor receptor signal. Biol Chem 382:1649–1662. https://doi.org/10.1515/BC.2001.200

Google Scholar 

Hellenthal KEM, Brabenec L, Wagner NM (2022) Regulation and dysregulation of endothelial permeability during systemic inflammation. Cells 11:1935. https://doi.org/10.3390/cells11121935

CAS  PubMed  PubMed Central  Google Scholar 

Hendel A, Hsu I, Granville DJ (2014) Granzyme B releases vascular endothelial growth factor from extracellular matrix and induces vascular permeability. Lab Invest 94:716–725. https://doi.org/10.1038/labinvest.2014.62

CAS  PubMed  PubMed Central  Google Scholar 

Holmqvist K, Cross MJ, Rolny C, Hägerkvist R, Rahimi N, Matsumoto T, Claesson-Welsh L, Welsh M (2004) The adaptor protein shb binds to tyrosine 1175 in vascular endothelial growth factor (VEGF) receptor-2 and regulates VEGF-dependent cellular migration. J Biol Chem 279:22267–22275. https://doi.org/10.1074/jbc.M312729200

CAS  PubMed  Google Scholar 

Kim DY, Park JA, Kim Y, Noh M, Park S, Lie E, Kim E, Kim YM, Kwon YG (2019) SALM4 regulates angiogenic functions in endothelial cells through VEGFR2 phosphorylation at Tyr1175. FASEB J 33:9842–9857. https://doi.org/10.1096/fj.201802516RR

CAS  PubMed  PubMed Central  Google Scholar 

Koch S, Claesson-Welsh L (2012) Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med 2:a006502. https://doi.org/10.1101/cshperspect.a006502

CAS  PubMed  PubMed Central  Google Scholar 

Koch S, Tugues S, Li X, Gualandi L, Claesson-Welsh L (2011) Signal transduction by vascular endothelial growth factor receptors. Biochem J 437:169–183. https://doi.org/10.1042/bj20110301

CAS  PubMed  Google Scholar 

Komarova YA, Kruse K, Mehta D, Malik AB (2017) Protein interactions at endothelial junctions and signaling mechanisms regulating endothelial permeability. Circ Res 120:179–206. https://doi.org/10.1161/circresaha.116.306534

CAS  PubMed  PubMed Central  Google Scholar 

LeBlanc ME, Saez-Torres KL, Cano I, Hu Z, Saint-Geniez M, Ng YS, D’Amore PA (2019) Glycocalyx regulation of vascular endothelial growth factor receptor 2 activity. FASEB J 33:9362–9373. https://doi.org/10.1096/fj.201900011R

CAS  PubMed  PubMed Central  Google Scholar 

Lee KL, Isham KR, Stringfellow L, Rothrock R, Kenney FT (1985) Molecular cloning of cDNAs cognate to genes sensitive to hormonal control in rat liver. J Biol Chem 260:16433–16438

CAS  PubMed  Google Scholar 

Liu N, Matsumoto M, Kitagawa K, Kotake Y, Suzuki S, Shirasawa S, Nakayama KI, Nakanishi M, Niida H, Kitagawa M (2012) Chk1 phosphorylates the tumour suppressor Mig-6, regulating the activation of EGF signalling. EMBO J 31:2365–2377. https://doi.org/10.1038/emboj.2012.88

CAS  PubMed  PubMed Central  Google Scholar 

Liu L, Xing L, Chen R, Zhang J, Huang Y, Huang L, Xie B, Ren X, Wang S, Kuang H, Lin X, Kumar A, Kim JK, Lee C, Li X (2021) Mitogen-inducible gene 6 inhibits angiogenesis by binding to SHC1 and suppressing its phosphorylation. Front Cell Dev Biol 9:634242. https://doi.org/10.3389/fcell.2021.634242

PubMed  PubMed Central  Google Scholar 

Liu Y, Li Y, Wang Y, Lin C, Zhang D, Chen J, Ouyang L, Wu F, Zhang J, Chen L (2022) Recent progress on vascular endothelial growth factor receptor inhibitors with dual targeting capabilities for tumor therapy. J Hematol Oncol 15:89. https://doi.org/10.1186/s13045-022-01310-7

CAS  PubMed  PubMed Central  Google Scholar 

Oshikawa J, Kim SJ, Furuta E, Caliceti C, Chen GF, McKinney RD, Kuhr F, Levitan I, Fukai T, Ushio-Fukai M (2012) Novel role of p66Shc in ROS-dependent VEGF signaling and angiogenesis in endothelial cells. Am J Physiol Heart Circ Physiol 302:H724-732. https://doi.org/10.1152/ajpheart.00739.2011

CAS  PubMed  Google Scholar 

Pante G, Thompson J, Lamballe F, Iwata T, Ferby I, Barr FA, Davies AM, Maina F, Klein R (2005) Mitogen-inducible gene 6 is an endogenous inhibitor of HGF/Met-induced cell migration and neurite growth. J Cell Biol 171:337–348. https://doi.org/10.1083/jcb.200502013

CAS  PubMed  PubMed Central  Google Scholar 

Park-Windhol C, D’Amore PA (2016) Disorders of vascular permeability. Annu Rev Pathol 11:251–281. https://doi.org/10.1146/annurev-pathol-012615-044506

CAS  PubMed  PubMed Central  Google Scholar 

Pronk MCA, van Bezu JSM, van Nieuw Amerongen GP, van Hinsbergh VWM, Hordijk PL (2019) RhoA, RhoB and RhoC differentially regulate endothelial barrier function. Small GTPases 10:466–484. https://doi.org/10.1080/21541248.2017.1339767

PubMed  Google Scholar 

Radeva MY, Waschke J (2018) Mind the gap: mechanisms regulating the endothelial barrier. Acta Physiol (oxf). https://doi.org/10.1111/apha.12860

Google Scholar 

Shaik F, Cuthbert GA, Homer-Vanniasinkam S, Muench SP, Ponnambalam S, Harrison MA (2020) Structural basis for vascular endothelial growth factor receptor activation and implications for disease therapy. Biomolecules 10:1673. https://doi.org/10.3390/biom10121673

CAS  PubMed Central  Google Scholar 

Shu X, Keller TCT, Begandt D, Butcher JT, Biwer L, Keller AS, Columbus L, Isakson BE (2015) Endothelial nitric oxide synthase in the microcirculation. Cell Mol Life Sci 72:4561–4575. https://doi.org/10.1007/s00018-015-2021-0

CAS  PubMed  PubMed Central  Google Scholar 

Simons M, Gordon E, Claesson-Welsh L (2016) Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol 17:611–625. https://doi.org/10.1038/nrm.2016.87

CAS  PubMed  Google Scholar 

Su Y, Kondrikov D, Block ER (2005) Cytoskeletal regulation of nitric oxide synthase. Cell Biochem Biophys 43:439–449. https://doi.org/10.1385/cbb:43:3:439

CAS  PubMed  Google Scholar 

Sun Z, Li X, Massena S, Kutschera S, Padhan N, Gualandi L, Sundvold-Gjerstad V, Gustafsson K, Choy WW, Zang G, Quach M, Jansson L, Phillipson M, Abid MR, Spurkland A, Claesson-Welsh L (2012) VEGFR2 induces c-Src signaling and vascular permeability in vivo via the adaptor protein TSAd. J Exp Med 209:1363–1377. https://doi.org/10.1084/jem.20111343

CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif