Low-intensity pulsed ultrasound partially reversed the deleterious effects of a severe spinal cord injury-induced bone loss and osteoporotic fracture healing in paraplegic rats

Cruz CD, Coelho A, Antunes-Lopes T, Cruz F. Biomarkers of spinal cord injury and ensuing bladder dysfunction. Adv Drug Deliv Rev. 2015;82-83:153–9.

Ozisler Z, Koklu K, Ozel S, Unsal-Delialioglu S. Outcomes of bowel program in spinal cord injury patients with neurogenic bowel dysfunction. Neural Regen Res. 2015;10:1153–8. https://pubmed.ncbi.nlm.nih.gov/26330842.

Article  Google Scholar 

Hoh DJ, Mercier LM, Hussey SP, Lane MA. Respiration following spinal cord injury: evidence for human neuroplasticity. Respir Physiol Neurobiol. 2013;189:450–64. https://pubmed.ncbi.nlm.nih.gov/23891679.

Article  Google Scholar 

Bauman WA, Spungen AM. Coronary heart disease in individuals with spinal cord injury: assessment of risk factors. Spinal Cord. 2008;46:466–76. https://doi.org/10.1038/sj.sc.3102161.

Article  CAS  PubMed  Google Scholar 

Kovindha A, Kammuang-Lue P, Prakongsai P, Wongphan T. Prevalence of pressure ulcers in Thai wheelchair users with chronic spinal cord injuries. Spinal Cord. 2015;53:767–71. https://pubmed.ncbi.nlm.nih.gov/25939607.

Article  CAS  Google Scholar 

Abdelrahman S, Ireland A, Winter EM, Purcell M, Coupaud S. Osteoporosis after spinal cord injury: aetiology, effects and therapeutic approaches. J Musculoskelet Neuronal Interact. 2021;21:26–50. http://www.ncbi.nlm.nih.gov/pubmed/33657753.

CAS  PubMed  PubMed Central  Google Scholar 

Hadjiargyrou M, McLeod K, Ryaby JP, Rubin C. Enhancement of fracture healing by low intensity ultrasound. Clin Orthop Relat Res. 1998;355S:S216–29. https://doi.org/10.1097/00003086-199810001-00022.

Article  Google Scholar 

Cheung W-H, Chow SK, Sun M-H, Qin L, Leung K-S. Low-Intensity pulsed ultrasound accelerated callus formation, angiogenesis and callus remodeling in osteoporotic fracture healing. Ultrasound Med Biol. 2011;37:231–8. https://doi.org/10.1016/j.ultrasmedbio.2010.11.016.

Article  PubMed  Google Scholar 

Lewis DI. Animal experimentation: implementation and application of the 3Rs. Willmott C, editor. Emerg Top Life Sci. 2019;3:675–9. https://portlandpress.com/emergtoplifesci/article/3/6/675/220907/Animal-experimentation-implementation-and.

Article  Google Scholar 

Guide for the Care and Use of Laboratory Animals. Guide for the care and use of laboratory animals. 2011. http://www.ncbi.nlm.nih.gov/pubmed/21595115.

Butezloff MM, Volpon JB, Ximenez JPB, Astolpho K, Correlo VM, Reis RL, et al. Gene expression changes are associated with severe bone loss and deficient fracture callus formation in rats with complete spinal cord injury. Spinal Cord. 2019:58:365–76.

Santiago HAR, Zamarioli A, Sousa Neto MD, Volpon JB. Exposure to secondhand smoke impairs fracture healing in rats. Clin Orthop Relat Res. 2017;475:903–5.

Duarte LR. The stimulation of bone growth by ultrasound. Arch Orthop Trauma Surg. 1983;101:153–9. https://doi.org/10.1007/bf00436764.

Article  CAS  PubMed  Google Scholar 

Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R, et al. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Min Res. 2010;25:1468–86. https://www.ncbi.nlm.nih.gov/pubmed/20533309.

Article  Google Scholar 

Zamarioli A, Campbell ZR, Maupin KA, Childress PJ, Ximenez JPB, Adam G, et al. Analysis of the effects of spaceflight and local administration of thrombopoietin to a femoral defect injury on distal skeletal sites. NPJ Microgravity. 2021;7:12. http://www.ncbi.nlm.nih.gov/pubmed/33772025.

Article  CAS  Google Scholar 

Chakraborty N, Zamarioli A, Gautam A, Campbell R, Mendenhall SK, Childress PJ. et al. Gene-metabolite networks associated with impediment of bone fracture repair in spaceflight. Comput Struct Biotechnol J. 2021;19:3507–20. https://pubmed.ncbi.nlm.nih.gov/34194674.

Article  CAS  Google Scholar 

Glatt V, Evans CH, Tetsworth K. A concert between biology and biomechanics: the influence of the mechanical environment on bone healing. Front Physiol. 2017;7:678 https://pubmed.ncbi.nlm.nih.gov/28174539.

Article  Google Scholar 

Hankenson KD, Zimmerman G, Marcucio R. Biological perspectives of delayed fracture healing. Injury. 2014;45:S8–15. https://pubmed.ncbi.nlm.nih.gov/24857030.

Article  Google Scholar 

Giangregorio L, Blimkie CJR. Skeletal adaptations to alterations in weight-bearing activity: a comparison of models of disuse osteoporosis. Sports Med. 2002;32:459–76. http://www.ncbi.nlm.nih.gov/pubmed/12015807.

Article  Google Scholar 

Haider IT, Lobos SM, Simonian N, Schnitzer TJ, Edwards WB. Bone fragility after spinal cord injury: reductions in stiffness and bone mineral at the distal femur and proximal tibia as a function of time. Osteoporos Int. 2018;29: 2703–2715.

Sahbani K, Cardozo CP, Bauman WA, Tawfeek HA. Inhibition of TGF-β signaling attenuates disuse-induced trabecular bone loss after spinal cord injury in male mice. Endocrinology. 2022;163. https://academic.oup.com/endo/article/doi/10.1210/endocr/bqab230/6427655.

Wilmet E, Ismail AA, Heilporn A, Welraeds D, Bergmann P. Longitudinal study of the bone mineral content and of soft tissue composition after spinal cord section. Paraplegia. 1995;33:674–7.

Giannoudis PV, Jones E, Einhorn TA. Fracture healing and bone repair. Injury. 2011;42:549–50. https://www.ncbi.nlm.nih.gov/pubmed/21474131.

Article  Google Scholar 

Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Med. 2011;9:66. http://www.ncbi.nlm.nih.gov/pubmed/21627784.

Article  Google Scholar 

Schandelmaier S, Kaushal A, Lytvyn L, Heels-Ansdell D, Siemieniuk RAC, Agoritsas T, et al. Low intensity pulsed ultrasound for bone healing: systematic review of randomized controlled trials. BMJ. 2017;356:j656. http://www.ncbi.nlm.nih.gov/pubmed/28348110.

Article  Google Scholar 

Harrison A, Alt V. Low-intensity pulsed ultrasound (LIPUS) for stimulation of bone healing – a narrative review. Injury. 2021;52:S91–6. https://doi.org/10.1016/j.injury.2021.05.002.

Article  PubMed  Google Scholar 

Pounder NM, Harrison AJ. Low intensity pulsed ultrasound for fracture healing: a review of the clinical evidence and the associated biological mechanism of action. Ultrasonic. 2008;48:330–8. https://doi.org/10.1016/j.ultras.2008.02.005.

Article  CAS  Google Scholar 

Leighton R, Watson JT, Giannoudis P, Papakostidis C, Harrison A, Steen RG, et al. Healing of fracture nonunions treated with low-intensity pulsed ultrasound (LIPUS): a systematic review and meta-analysis. Injury. 2017;48:1339–47. https://doi.org/10.1016/j.injury.2017.05.016. Available from

Article  PubMed  Google Scholar 

Bashardoust Tajali S, Houghton P, MacDermid JC, Grewal R. Effects of low-intensity pulsed ultrasound therapy on fracture healing. Am J Phys Med Rehabil. 2012;91:349–67. https://doi.org/10.1097/phm.0b013e31822419ba.

Article  PubMed  Google Scholar 

Yang KH, Parvizi J, Wang SJ, Lewallen DG, Kinnick RR, Greenleaf JF, et al. Exposure to low-intensity ultrasound increases aggrecan gene expression in a rat femur fracture model. J Orthop Res. 1996;14:802–9. http://www.ncbi.nlm.nih.gov/pubmed/8893775.

Article  CAS  Google Scholar 

Zhou X-Y, Wu S-Y, Zhang Z-C, Wang F, Yang Y-L, Li M, et al. Low-intensity pulsed ultrasound promotes endothelial cell-mediated osteogenesis in a conditioned medium coculture system with osteoblasts. Medicine. 2017;96:e8397. http://www.ncbi.nlm.nih.gov/pubmed/29069035.

Article  Google Scholar 

Wang F-S, Kuo Y-R, Wang C-J, Yang KD, Chang P-R, Huang Y-T, et al. Nitric oxide mediates ultrasound-induced hypoxia-inducible factor-1alpha activation and vascular endothelial growth factor-A expression in human osteoblasts. Bone. 2004;35:114–23. http://www.ncbi.nlm.nih.gov/pubmed/15207747.

Article  CAS  Google Scholar 

Hiyama A, Mochida J, Iwashina T, Omi H, Watanabe T, Serigano K, et al. Synergistic effect of low-intensity pulsed ultrasound on growth factor stimulation of nucleus pulposus cells. J Orthop Res. 2007;25:1574–81. http://www.ncbi.nlm.nih.gov/pubmed/17593536.

Article  CAS  Google Scholar 

Reher P, Doan N, Bradnock B, Meghji S, Harris M. Effect of ultrasound on the production of IL-8, basic FGF and VEGF. Cytokine. 1999;11:416–23. http://www.ncbi.nlm.nih.gov/pubmed/10346981.

Article  CAS  Google Scholar 

Reher P, Harris M, Whiteman M, Hai HK, Meghji S. Ultrasound stimulates nitric oxide and prostaglandin E2 production by human osteoblasts. Bone. 2002;31:236–41. http://www.ncbi.nlm.nih.gov/pubmed/12110440.

Borovecki F, Pecina-Slaus N, Vukicevic S. Biological mechanisms of bone and cartilage remodelling-genomic perspective. Int Orthop. 2007;31:799–805. http://www.ncbi.nlm.nih.gov/pubmed/17609952.

Article  CAS  Google Scholar 

Ito M, Azuma Y, Ohta T, Komoriya K. Effects of ultrasound and 1,25-dihydroxyvitamin D3 on growth factor secretion in co-cultures of osteoblasts and endothelial cells. Ultrasound Med Biol. 2000;26:161–6. http://www.ncbi.nlm.nih.gov/pubmed/10687804.

Article  CAS  Google Scholar 

Tang L, Kang Y, Sun S, Zhao T, Cao W, Fan X, et al. Inhibition of MSTN signal pathway may participate in LIPUS preventing bone loss in ovariectomized rats. J Bone Min Metab. 2019;38:14–26. https://doi.org/10.1007/s00774-019-01029-5.

Article  CAS  Google Scholar 

Shimizu T, Fujita N, Tsuji-Tamura K, Kitagawa Y, Fujisawa T, Tamura M, et al. Osteocytes as main responders to low-intensity pulsed ultrasound treatment during fracture healing. Sci Rep. 2021;11:10298. https://pubmed.ncbi.nlm.nih.gov/33986415.

Article  CAS  Google Scholar 

Fung C-H, Cheung W-H, Pounder NM, Harrison A, Leung K-S. Osteocytes exposed to far field of therapeutic ultrasound promotes osteogenic cellular activities in pre-osteoblasts through soluble factors. Ultrason. 2014;54:1358–65. https://doi.org/10.1016/j.ultras.2014.02.003.

Article  CAS  Google Scholar 

Gifre L, Ruiz-Gaspà S, Carrasco JL, Portell E, Vidal J, Muxi A, et al. Effect of recent spinal cord injury on the OPG/RANKL system and its relationship with bone loss and the response to denosumab therapy. Osteoporos Int. 2017;28:2707–15. http://link.springer.com/10.1007/s00198-017-4090-4.

Article  CAS  Google Scholar 

Trang NM, Kim E-N, Lee H-S, Jeong G-S. Effect on osteoclast differentiation and ER stress downregulation by amygdalin and RANKL binding interaction. Biomolecules. 2022. http://www.ncbi.nlm.nih.gov/pubmed/35204757.

Yao Z, Getting SJ, Locke IC. Regulation of TNF-induced osteoclast differentiation. Cells. 2021;11. http://www.ncbi.nlm.nih.gov/pubmed/35011694.

Sasaki F, Hayashi M, Ono T, Nakashima T. The regulation of RANKL by mechanical force. J Bone Min Metab. 2021;39:34–44. https://link.springer.com/10.1007/s00774-020-01145-7.

Article  CAS  Google Scholar 

Hanmoto T, Tabuchi Y, Ikegame M, Kondo T, Kitamura K-I, Endo M, et al. Effects of low-intensity pulsed ultrasound on osteoclasts: Analysis with goldfish scales as a model of bone. Biomed Res. 2017;38:71–7. http://www.ncbi.nlm.nih.gov/pubmed/28239034.

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif