System of sequences in multivariate reticular structures

Freund, R. et al. 25 years of reticular chemistry. Angew. Chem. Int. Ed. 60, 23946–23974 (2021).

CAS  Google Scholar 

Jiang, H., Alezi, D. & Eddaoudi, M. A reticular chemistry guide for the design of periodic solids. Nat. Rev. Mater. 6, 466–487 (2021).

CAS  Google Scholar 

Xu, W. et al. Anisotropic reticular chemistry. Nat. Rev. Mater. 5, 764–779 (2020).

CAS  Google Scholar 

Deng, H. et al. Multiple functional groups of varying ratios in metal–organic frameworks. Science 327, 846–850 (2010).

CAS  Google Scholar 

Liu, Q., Cong, H. & Deng, H. Deciphering the spatial arrangement of metals and correlation to reactivity in multivariate metal–organic frameworks. J. Am. Chem. Soc. 138, 13822–13825 (2016).

CAS  Google Scholar 

Meekel, E. G. & Goodwin, A. L. Correlated disorder in metal–organic frameworks. CrystEngComm 23, 2915–2922 (2021).

CAS  Google Scholar 

Kong, X. et al. Mapping of functional groups in metal–organic frameworks. Science 341, 882–885 (2013).

CAS  Google Scholar 

Sue, A. C.-H. et al. Heterogeneity of functional groups in a metal–organic framework displays magic number ratios. Proc. Natl Acad. Sci. USA 112, 5591–5596 (2015).

CAS  Google Scholar 

Ji, Z., Li, T. & Yaghi, O. M. Sequencing of metals in multivariate metal–organic frameworks. Science 369, 674–780 (2020).

CAS  Google Scholar 

Furukawa, H., Müller, U. & Yaghi, O. M. ‘Heterogeneity within order’ in metal–organic frameworks. Angew. Chem. Int. Ed. 54, 3417–3430 (2015).

CAS  Google Scholar 

Xia, Q. et al. Multivariate metal–organic frameworks as multifunctional heterogeneous asymmetric catalysts for sequential reactions. J. Am. Chem. Soc. 139, 8259–8266 (2017).

CAS  Google Scholar 

Zhai, Q.-G., Bu, X., Mao, C., Zhao, X. & Feng, P. Systematic and dramatic tuning on gas sorption performance in heterometallic metal–organic frameworks. J. Am. Chem. Soc. 138, 2524–2527 (2016).

CAS  Google Scholar 

Feng, Y., Chen, Q., Jiang, M. & Yao, J. Tailoring the properties of UiO-66 through defect engineering: a review. Ind. Eng. Chem. Res. 58, 17646–17659 (2019).

CAS  Google Scholar 

Taddei, M. When defects turn into virtues: the curious case of zirconium-based metal–organic frameworks. Coord. Chem. Rev. 343, 1–24 (2017).

CAS  Google Scholar 

Cadman, L. K. et al. Compositional control of pore geometry in multivariate metal–organic frameworks: an experimental and computational study. Dalton Trans. 45, 4316–4326 (2016).

CAS  Google Scholar 

Yuan, S. et al. Continuous variation of lattice dimensions and pore sizes in metal–organic frameworks. J. Am. Chem. Soc. 142, 4732–4738 (2020).

CAS  Google Scholar 

Ehrling, S. et al. Adaptive response of a metal–organic framework through reversible disorder–disorder transitions. Nat. Chem. 13, 568–574 (2021).

CAS  Google Scholar 

Bennett, T. D., Cheetham, A. K., Fuchs, A. H. & Coudert, F.-X. Interplay between defects, disorder and flexibility in metal–organic frameworks. Nat. Chem. 9, 11–16 (2016).

Google Scholar 

Islamov, M., Babaei, H. & Wilmer, C. E. Influence of missing linker defects on the thermal conductivity of metal–organic framework HKUST-1. ACS Appl. Mater. Interfaces 12, 56172–56177 (2020).

CAS  Google Scholar 

Krivovichev, S. V. Which inorganic structures are the most complex? Angew. Chem. Int. Ed. 53, 654–661 (2014).

CAS  Google Scholar 

Krivovichev, S. V. Structural and topological complexity of zeolites: an information-theoretic analysis. Microporous Mesoporous Mater. 171, 223–229 (2013).

CAS  Google Scholar 

Simonov, A. & Goodwin, A. L. Designing disorder into crystalline materials. Nat. Rev. Chem. 4, 657–673 (2020).

CAS  Google Scholar 

Ejsmont, A. et al. Applications of reticular diversity in metal–organic frameworks: an ever-evolving state of the art. Coord. Chem. Rev. 430, 213655 (2021).

CAS  Google Scholar 

Gándara, F. & Bennett, T. D. Crystallography of metal-organic frameworks. IUCrJ 1, 563–570 (2014).

Google Scholar 

Ockwig, N. W., Delgado-Friedrichs, O., O’Keeffe, M. & Yaghi, O. M. Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks. Acc. Chem. Res. 38, 176–182 (2005).

CAS  Google Scholar 

Zhang, Y.-B. et al. Introduction of functionality, selection of topology, and enhancement of gas adsorption in multivariate metal-organic framework-177. J. Am. Chem. Soc. 137, 2641–2650 (2015).

CAS  Google Scholar 

Li, S., Chung, Y. G., Simon, C. M. & Snurr, R. Q. High-throughput computational screening of multivariate metal-organic frameworks (MTV-MOFs) for CO2 capture. J. Phys. Chem. Lett. 8, 6135–6141 (2017).

CAS  Google Scholar 

Drummond, M. L., Cundari, T. R. & Wilson, A. K. Cooperative carbon capture capabilities in multivariate MOFs decorated with amino acid side chains: a computational study. J. Phys. Chem. C 117, 14717–14722 (2013).

CAS  Google Scholar 

Wu, Y., Duan, H. & Xi, H. Machine learning-driven insights into defects of zirconium metal–organic frameworks for enhanced ethane–ethylene separation. Chem. Mater. 32, 2986–2997 (2020).

CAS  Google Scholar 

Li, H., Eddaoudi, M., O’Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402, 276–279 (1999).

CAS  Google Scholar 

Wang, L. J. et al. Synthesis and characterization of metal–organic framework-74 containing 2, 4, 6, 8, and 10 different metals. Inorg. Chem. 53, 5881–5883 (2014).

CAS  Google Scholar 

Liu, Q., Cong, H. & Deng, H. Deciphering the spatial arrangement of metals and correlation to reactivity in multivariate metal–organic frameworks. J. Am. Chem. Soc. 138, 13822–13825 (2016).

CAS  Google Scholar 

Feng, L. et al. Imprinted apportionment of functional groups in multivariate metal–organic frameworks. J. Am. Chem. Soc. 141, 14524–14529 (2019).

CAS  Google Scholar 

Feng, L. et al. Creating hierarchical pores by controlled LinkerThermolysis in multivariate metal–organic frameworks. J. Am. Chem. Soc. 140, 2363–2372 (2018).

CAS  Google Scholar 

Dodson, R. A., Kalenak, A. P. & Matzger, A. J. Solvent choice in metal–organic framework linker exchange permits microstructural control. J. Am. Chem. Soc. 142, 20806–20813 (2020).

CAS  Google Scholar 

Schrimpf, W. et al. Chemical diversity in a metal–organic framework revealed by fluorescence lifetime imaging. Nat. Commun. 9:1647, 1–10 (2018).

Google Scholar 

Fracaroli, A. M. et al. Seven post-synthetic covalent reactions in tandem leading to enzyme-like complexity within metal–organic framework crystals. J. Am. Chem. Soc. 138, 8352–8355 (2016).

CAS  Google Scholar 

Svane, K. L., Bristow, J. K., Gale, J. D. & Walsh, A. Vacancy defect configurations in the metal-organic framework UiO-66: energetics and electronic structure. J. Mater. Chem. A 6, 8507–8513 (2018).

CAS  Google Scholar 

Trousselet, F., Archereau, A., Boutin, A. & Coudert, F. X. Heterometallic metal–organic frameworks of MOF-5 and UiO-66 families: insight from computational chemistry. J. Phys. Chem. C 120, 24885–24894 (2016).

CAS  Google Scholar 

Taddei, M. et al. Mixed-linker UiO-66: structure–property relationships revealed by a combination of high-resolution powder X-ray diffraction and density functional theory calculations. Phys. Chem. Chem. Phys. 19, 1551–1559 (2017).

CAS  Google Scholar 

Guo, W. et al. Kinetic-controlled formation of bimetallic metal–organic framework hybrid structures. Small 13, 1–8 (2017).

Google Scholar 

Fukushima, T. et al. Modular design of domain assembly in porous coordination polymer crystals via reactivity-directed crystallization process. J. Am. Chem. Soc. 134, 13341–13347 (2012).

CAS  Google Scholar 

Shearer, G. C. et al. Tuned to perfection: Ironing out the defects in metal–organic framework UiO-66. Chem. Mater. 26, 4068–4071 (2014).

CAS  Google Scholar 

Ye, G. et al. Boosting catalytic performance of metal–organic framework by increasing the defects via a facile and green approach. ACS Appl. Mater. Interfaces 9, 34937–34943 (2017).

CAS  Google Scholar 

Lyu, H., Ji, Z., Wuttke, S. & Yaghi, O. M. Digital reticular chemistry. Chem 6, 2219–2241 (2020).

CAS  Google Scholar 

Choi, K. M., Na, K., Somorjai, G. A. & Yaghi, O. M. Chemical environment control and enhanced catalytic performance of platinum nanoparticles embedded in nanocrystalline metal–organic frameworks. J. Am. Chem. Soc. 137, 7810–7816 (2015).

CAS  Google Scholar 

Kotnala, A., Ding, H. & Zheng, Y. Enhancing single-molecule fluorescence spectroscopy with simple and robust hybrid nanoapertures. ACS Photonics 8, 1673–1682 (2021).

CAS  Google Scholar 

Choi, H.-K. et al. Single-molecule surface-enhanced raman scattering as a probe of single-molecule surface reactions: promises and current challenges. Acc. Chem. Res. 52, 3008–3017 (2019).

CAS  Google Scholar 

Banerjee, R. et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319, 939–943 (2008).

CAS  Google Scholar 

Viola, R. et al. Operator-assisted harvesting of protein crystals using a universal micromanipulation robot. J. Appl. Crystallogr. 40, 539–545 (2007).

CAS  Google Scholar 

Moosavi, S. M. et al. Capturing chemical intuition in synthesis of metal–organic frameworks. Nat. Commun. 10, 1–7 (2019).

Google Scholar 

Raccuglia, P. et al. Machine-learning-assisted materials discovery using failed experiments. Nature 533, 73–76 (2016).

CAS  Google Scholar 

Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molecular and materials science. Nature 559, 547–555 (2018).

CAS  Google Scholar 

Skoulidas, A. I. Molecular dynamics simulations of gas diffusion in metal–organic frameworks: argon in CuBTC. J. Am. Chem. Soc. 126, 1356–1357 (2004).

CAS  Google Scholar 

Witherspoon, V. J. et al. Combined nuclear magnetic resonance and molecular dynamics study of methane adsorption in M2(dobdc) metal–organic frameworks. J. Phys. Chem. C 123, 12286–12295 (2019).

CAS  Google Scholar 

Düren, T., Bae, Y. S. & Snurr, R. Q. Using molecular simulation to characterise metal–organic frameworks for adsorption applications. Chem. Soc. Rev. 38, 1237–1247 (2009).

Google Scholar 

Karlen, S. D. & Garcia-Garibay, M. A. in Molecular Machines (ed. Kelly, T. R.) 179–227 (Springer, 2005).

Gonzalez-Nelson, A., Coudert, F.-X. & van der Veen, M. A. Rotational dynamics of linkers in metal–organic frameworks. Nanomaterials 9, 330 (2019).

CAS 

留言 (0)

沒有登入
gif