Functional spectrum and specificity of mitochondrial ferredoxins FDX1 and FDX2

Campbell, I. J., Bennett, G. N. & Silberg, J. J. Evolutionary relationships between low potential ferredoxin and flavodoxin electron carriers. Front. Energy Res. https://doi.org/10.3389/fenrg.2019.00079 (2019).

Hanke, G. & Mulo, P. Plant type ferredoxins and ferredoxin-dependent metabolism. Plant Cell Environ. 36, 1071–1084 (2013).

CAS  PubMed  Google Scholar 

Miotto, O. et al. Genetic architecture of artemisinin-resistant Plasmodium falciparum. Nat. Genet. 47, 226–234 (2015).

CAS  PubMed  PubMed Central  Google Scholar 

Changmai, P. et al. Both human ferredoxins equally efficiently rescue ferredoxin deficiency in Trypanosoma brucei. Mol. Microbiol. 89, 135–151 (2013).

CAS  PubMed  Google Scholar 

Ewen, K. M., Ringle, M. & Bernhardt, R. Adrenodoxin–a versatile ferredoxin. IUBMB Life 64, 506–512 (2012).

CAS  PubMed  Google Scholar 

Sheftel, A. D. et al. Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. Proc. Natl Acad. Sci. USA 107, 11775–11780 (2010).

CAS  PubMed  PubMed Central  Google Scholar 

Lange, H., Kaut, A., Kispal, G. & Lill, R. A mitochondrial ferredoxin is essential for biogenesis of cellular iron-sulfur proteins. Proc. Natl Acad. Sci. USA 97, 1050–1055 (2000).

CAS  PubMed  PubMed Central  Google Scholar 

Shi, Y., Ghosh, M., Kovtunovych, G., Crooks, D. R. & Rouault, T. A. Both human ferredoxins 1 and 2 and ferredoxin reductase are important for iron-sulfur cluster biogenesis. Biochim. Biophys. Acta 1823, 484–492 (2012).

CAS  PubMed  Google Scholar 

Webert, H. et al. Functional reconstitution of mitochondrial Fe/S cluster synthesis on Isu1 reveals the involvement of ferredoxin. Nat. Commun. 5, 5013 (2014).

CAS  PubMed  Google Scholar 

Freibert, S. A. et al. Evolutionary conservation and in vitro reconstitution of microsporidian iron-sulfur cluster biosynthesis. Nat. Commun. 8, 13932 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Braymer, J. J., Freibert, S. A., Rakwalska-Bange, M. & Lill, R. Mechanistic concepts of iron-sulfur protein biogenesis in Biology. Biochim. Biophys. Acta, Mol. Cell. Res. 1868, 118863 (2021).

CAS  Google Scholar 

Kispal, G., Csere, P., Prohl, C. & Lill, R. The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. EMBO J. 18, 3981–3989 (1999).

CAS  PubMed  PubMed Central  Google Scholar 

Boniecki, M. T., Freibert, S. A., Muhlenhoff, U., Lill, R. & Cygler, M. Structure and functional dynamics of the mitochondrial Fe/S cluster synthesis complex. Nat. Commun. 8, 1287 (2017).

PubMed  PubMed Central  Google Scholar 

Van Vranken, J. G. et al. The mitochondrial acyl carrier protein (ACP) coordinates mitochondrial fatty acid synthesis with iron sulfur cluster biogenesis. eLife 5, e17828 (2016).

PubMed  PubMed Central  Google Scholar 

Kim, J. H., Frederick, R. O., Reinen, N. M., Troupis, A. T. & Markley, J. L. [2Fe-2S]-Ferredoxin binds directly to cysteine desulfurase and supplies an electron for iron-sulfur cluster assembly but is displaced by the scaffold protein or bacterial frataxin. J. Am. Chem. Soc. 15, 8117–8120 (2013).

Google Scholar 

Gervason, S. et al. Physiologically relevant reconstitution of iron-sulfur cluster biosynthesis uncovers persulfide-processing functions of ferredoxin-2 and frataxin. Nat. Commun. 10, 3566 (2019).

PubMed  PubMed Central  Google Scholar 

Freibert, S. A. et al. N-terminal tyrosine of ISCU2 triggers [2Fe-2S] cluster synthesis by ISCU2 dimerization. Nat. Commun. 12, 6902 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Weiler, B. D. et al. Mitochondrial [4Fe-4S] protein assembly involves reductive [2Fe-2S] cluster fusion on ISCA1-ISCA2 by electron flow from ferredoxin FDX2. Proc. Natl Acad. Sci. USA 117, 20555–20565 (2020).

CAS  PubMed  PubMed Central  Google Scholar 

Lill, R. & Freibert, S. A. Mechanisms of mitochondrial iron-sulfur protein biogenesis. Annu. Rev. Biochem. 89, 471–499 (2020).

CAS  PubMed  Google Scholar 

Zhang, Y. et al. Ferredoxin reductase is critical for p53-dependent tumor suppression via iron regulatory protein 2. Genes Dev. 31, 1243–1256 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Barros, M. H., Carlson, C. G., Glerum, D. M. & Tzagoloff, A. Involvement of mitochondrial ferredoxin and Cox15p in hydroxylation of heme O. FEBS Lett. 492, 133–138 (2001).

CAS  PubMed  Google Scholar 

Bareth, B. et al. The heme a synthase Cox15 associates with cytochrome c oxidase assembly intermediates during Cox1 maturation. Mol. Cell. Biol. 33, 4128–4137 (2013).

CAS  PubMed  PubMed Central  Google Scholar 

Swenson, S. A. et al. From synthesis to utilization: the ins and outs of mitochondrial heme. Cells 9, 579 (2020).

CAS  PubMed Central  Google Scholar 

Ozeir, M. et al. Coenzyme Q biosynthesis: Coq6 is required for the C5-hydroxylation reaction and substrate analogs rescue Coq6 deficiency. Chem. Biol. 18, 1134–1142 (2011).

CAS  PubMed  Google Scholar 

Cai, K., Tonelli, M., Frederick, R. O. & Markley, J. L. Human mitochondrial Ferredoxin 1 (FDX1) and Ferredoxin 2 (FDX2) both bind cysteine desulfurase and donate electrons for iron-sulfur cluster biosynthesis. Biochemistry 56, 487–499 (2017).

CAS  PubMed  Google Scholar 

Landgraf, B. J., McCarthy, E. L. & Booker, S. J. Radical S-adenosylmethionine enzymes in human health and disease. Annu. Rev. Biochem. 85, 485–514 (2016).

CAS  PubMed  Google Scholar 

Cronan, J. E. Assembly of lipoic acid on its cognate enzymes: an extraordinary and essential biosynthetic pathway. Microbiol Mol. Biol. Rev. 80, 429–450 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Zhu, J. & Thompson, C. B. Metabolic regulation of cell growth and proliferation. Nat. Rev. Mol. Cell Biol. 20, 436–450 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Tsvetkov, P. et al. Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nat. Chem. Biol. 15, 681–689 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Tsvetkov, P. et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 375, 1254–1261 (2022).

CAS  PubMed  PubMed Central  Google Scholar 

Campbell, I. J. et al. Recombination of 2Fe-2S ferredoxins reveals differences in the inheritance of thermostability and midpoint potential. ACS Synth. Biol. 9, 3245–3253 (2020).

CAS  PubMed  Google Scholar 

Antonicka, H. et al. Mutations in COX15 produce a defect in the mitochondrial heme biosynthetic pathway, causing early-onset fatal hypertrophic cardiomyopathy. Am. J. Hum. Genet. 72, 101–114 (2003).

CAS  PubMed  Google Scholar 

Sheftel, A. D. et al. The human mitochondrial ISCA1, ISCA2, and IBA57 proteins are required for [4Fe-4S] protein maturation. Mol. Biol. Cell 23, 1157–1166 (2012).

CAS  PubMed  PubMed Central  Google Scholar 

McCarthy, E. L. & Booker, S. J. Destruction and reformation of an iron-sulfur cluster during catalysis by lipoyl synthase. Science 358, 373–377 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Nagai, M. et al. The oncology drug elesclomol selectively transports copper to the mitochondria to induce oxidative stress in cancer cells. Free Radic. Biol. Med 52, 2142–2150 (2012).

CAS  PubMed  Google Scholar 

Soma, S. et al. Elesclomol restores mitochondrial function in genetic models of copper deficiency. Proc. Natl Acad. Sci. USA 115, 8161–8166 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Hasinoff, B. B., Yadav, A. A., Patel, D. & Wu, X. The cytotoxicity of the anticancer drug elesclomol is due to oxidative stress indirectly mediated through its complex with Cu(II). J. Inorg. Biochem. 137, 22–30 (2014).

CAS  PubMed  Google Scholar 

Yadav, A. A., Patel, D., Wu, X. & Hasinoff, B. B. Molecular mechanisms of the biological activity of the anticancer drug elesclomol and its complexes with Cu(II), Ni(II) and Pt(II). J. Inorg. Biochem. 126, 1–6 (2013).

CAS  PubMed  Google Scholar 

Vallieres, C., Holland, S. L. & Avery, S. V. Mitochondrial ferredoxin determines vulnerability of cells to copper excess. Cell Chem. Biol. 24, 1228–1237 e3 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Mühlenhoff, U. et al. Cytosolic monothiol glutaredoxins function in intracellular iron sensing and trafficking via their bound iron-sulfur cluster. Cell Metab. 12, 373–385 (2010).

PubMed  PubMed Central  Google Scholar 

Schiffler, B. et al. The adrenodoxin-like ferredoxin of Schizosaccharomyces pombe mitochondria. J. Inorg. Biochem. 98, 1229–1237 (2004).

CAS  PubMed  Google Scholar 

Muller, J. J. et al. Structural and thermodynamic characterization of the adrenodoxin-like domain of the electron-transfer protein Etp1 from Schizosaccharomyces pombe. J. Inorg. Biochem. 105, 957–965 (2011).

PubMed  Google Scholar 

Omura, T. & Gotoh, O. Evolutionary origin of mitochondrial cytochrome P450. J. Biochem. 161, 399–407 (2017).

CAS  PubMed  Google Scholar 

Kimura, T. & Suzuki, K. Components of the electron transport system in adrenal steroid hydroxylase

留言 (0)

沒有登入
gif