YcaO-mediated ATP-dependent peptidase activity in ribosomal peptide biosynthesis

Burkhart, B. J., Schwalen, C. J., Mann, G., Naismith, J. H. & Mitchell, D. A. YcaO-dependent posttranslational amide activation: biosynthesis, structure, and function. Chem. Rev. 117, 5389–5456 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Dunbar, K. L., Melby, J. O. & Mitchell, D. A. YcaO domains use ATP to activate amide backbones during peptide cyclodehydrations. Nat. Chem. Biol. 8, 569–575 (2012).

CAS  PubMed  PubMed Central  Google Scholar 

Nayak, D. D., Mahanta, N., Mitchell, D. A. & Metcalf, W. W. Post-translational thioamidation of methyl-coenzyme M reductase, a key enzyme in methanogenic and methanotrophic Archaea. eLife 6, e29218 (2017).

PubMed  PubMed Central  Google Scholar 

Arnison, P. G. et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30, 108–160 (2013).

CAS  PubMed  PubMed Central  Google Scholar 

Montalban-Lopez, M. et al. New developments in RiPP discovery, enzymology and engineering. Nat. Prod. Rep. 38, 130–239 (2021).

CAS  PubMed  Google Scholar 

Li, Y. M., Milne, J. C., Madison, L. L., Kolter, R. & Walsh, C. T. From peptide precursors to oxazole and thiazole-containing peptide antibiotics: microcin B17 synthase. Science 274, 1188–1193 (1996).

CAS  PubMed  Google Scholar 

McIntosh, J. A., Donia, M. S. & Schmidt, E. W. Insights into heterocyclization from two highly similar enzymes. J. Am. Chem. Soc. 132, 4089–4091 (2010).

CAS  PubMed  PubMed Central  Google Scholar 

Vinogradov, A. A. & Suga, H. Introduction to thiopeptides: biological activity, biosynthesis, and strategies for functional reprogramming. Cell Chem. Biol. 27, 1032–1051 (2020).

CAS  PubMed  Google Scholar 

Melby, J. O., Nard, N. J. & Mitchell, D. A. Thiazole/oxazole-modified microcins: complex natural products from ribosomal templates. Curr. Opin. Chem. Biol. 15, 369–378 (2011).

CAS  PubMed  PubMed Central  Google Scholar 

Franz, L., Kazmaier, U., Truman, A. W. & Koehnke, J. Bottromycins—biosynthesis, synthesis and activity. Nat. Prod. Rep. 38, 1659–1683 (2021).

CAS  PubMed  Google Scholar 

Travin, D. Y. et al. Biosynthesis of translation inhibitor klebsazolicin proceeds through heterocyclization and N-terminal amidine formation catalyzed by a single YcaO enzyme. J. Am. Chem. Soc. 140, 5625–5633 (2018).

CAS  PubMed  Google Scholar 

Franz, L., Adam, S., Santos-Aberturas, J., Truman, A. W. & Koehnke, J. Macroamidine formation in bottromycins is catalyzed by a divergent YcaO enzyme. J. Am. Chem. Soc. 139, 18158–18161 (2017).

CAS  PubMed  Google Scholar 

Kjaerulff, L. et al. Thioholgamides: thioamide-containing cytotoxic RiPP natural products. ACS Chem. Biol. 12, 2837–2841 (2017).

CAS  PubMed  Google Scholar 

Santos-Aberturas, J. et al. Uncovering the unexplored diversity of thioamidated ribosomal peptides in Actinobacteria using the RiPPER genome mining tool. Nucleic Acids Res 47, 4624–4637 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Liu, J. et al. Insights into the thioamidation of thiopeptins to enhance the understanding of the biosynthetic logic of thioamide-containing thiopeptides. Org. Biomol. Chem. 17, 3727–3731 (2019).

CAS  PubMed  Google Scholar 

Dong, S. H., Liu, A., Mahanta, N., Mitchell, D. A. & Nair, S. K. Mechanistic basis for ribosomal peptide backbone modifications. ACS Cent. Sci. 5, 842–851 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Mahanta, N., Liu, A., Dong, S., Nair, S. K. & Mitchell, D. A. Enzymatic reconstitution of ribosomal peptide backbone thioamidation. Proc. Natl Acad. Sci. USA 115, 3030–3035 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Gu, W., Dong, S. H., Sarkar, S., Nair, S. K. & Schmidt, E. W. The biochemistry and structural biology of cyanobactin pathways: enabling combinatorial biosynthesis. Methods Enzymol. 604, 113–163 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Sivonen, K., Leikoski, N., Fewer, D. P. & Jokela, J. Cyanobactins–ribosomal cyclic peptides produced by cyanobacteria. Appl. Microbiol. Biotechnol. 86, 1213–1225 (2010).

CAS  PubMed  PubMed Central  Google Scholar 

Gu, W. & Schmidt, E. W. Three principles of diversity-generating biosynthesis. Acc. Chem. Res. 50, 2569–2576 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Agarwal, V., Pierce, E., McIntosh, J., Schmidt, E. W. & Nair, S. K. Structures of cyanobactin maturation enzymes define a family of transamidating proteases. Chem. Biol. 19, 1411–1422 (2012).

CAS  PubMed  Google Scholar 

Koehnke, J. et al. The mechanism of patellamide macrocyclization revealed by the characterization of the PatG macrocyclase domain. Nat. Struct. Mol. Biol. 19, 767–772 (2012).

CAS  PubMed  PubMed Central  Google Scholar 

McIntosh, J. A. et al. Circular logic: nonribosomal peptide-like macrocyclization with a ribosomal peptide catalyst. J. Am. Chem. Soc. 132, 15499–15501 (2010).

CAS  PubMed  PubMed Central  Google Scholar 

Akito, N., Hitoshi, K. & Jinsaku, S. Muscoride A: a new oxazole peptide alkaloid from freshwater cyanobacterium Nostoc muscorum. Tetrahedron Lett. 36, 4097–4100 (1995).

Google Scholar 

Amaike, K., Muto, K., Yamaguchi, J. & Itami, K. Decarbonylative C–H coupling of azoles and aryl esters: unprecedented nickel catalysis and application to the synthesis of muscoride A. J. Am. Chem. Soc. 134, 13573–13576 (2012).

CAS  PubMed  Google Scholar 

Coqueron, P. Y., Didier, C. & Ciufolini, M. A. Iterative oxazole assembly via alpha-chloroglycinates: total synthesis of (−)-muscoride A. Angew. Chem. Int. Ed. Engl. 42, 1411–1414 (2003).

CAS  PubMed  Google Scholar 

Correa, A., Cornella, J. & Martin, R. Nickel-catalyzed decarbonylative C–H coupling reactions: a strategy for preparing bis(heteroaryl) backbones. Angew. Chem. Int. Ed. Engl. 52, 1878–1880 (2013).

CAS  PubMed  Google Scholar 

Wipf, P. & Venkatraman, S. Total synthesis of (–)-muscoride A. J. Org. Chem. 61, 6517–6522 (1996).

CAS  PubMed  Google Scholar 

J.C., M., G, P. & R.M., T. Total synthesis of (–)-muscoride A: a novel bis-oxazole based alkaloid from the cyanobacterium Nostoc muscorum. Synthesis S1, 613–618 (1998).

Google Scholar 

Mattila, A. et al. Biosynthesis of the bis-prenylated alkaloids muscoride A and B. ACS Chem. Biol. 14, 2683–2690 (2019).

CAS  PubMed  Google Scholar 

Eryilmaz, E., Shah, N. H., Muir, T. W. & Cowburn, D. Structural and dynamical features of inteins and implications on protein splicing. J. Biol. Chem. 289, 14506–14511 (2014).

CAS  PubMed  PubMed Central  Google Scholar 

Perler, F. B. Protein splicing of inteins and hedgehog autoproteolysis: structure, function, and evolution. Cell 92, 1–4 (1998).

CAS  PubMed  Google Scholar 

Perler, F. B., Xu, M. Q. & Paulus, H. Protein splicing and autoproteolysis mechanisms. Curr. Opin. Chem. Biol. 1, 292–299 (1997).

CAS  PubMed  Google Scholar 

Attwood, P. V., Besant, P. G. & Piggott, M. J. Focus on phosphoaspartate and phosphoglutamate. Amino Acids 40, 1035–1051 (2011).

CAS  PubMed  Google Scholar 

Koehnke, J. et al. The cyanobactin heterocyclase enzyme: a processive adenylase that operates with a defined order of reaction. Angew. Chem. Int. Ed. Engl. 52, 13991–13996 (2013).

CAS  PubMed  PubMed Central  Google Scholar 

Koehnke, J. et al. Structural analysis of leader peptide binding enables leader-free cyanobactin processing. Nat. Chem. Biol. 11, 558–563 (2015).

CAS  PubMed  PubMed Central  Google Scholar 

Donia, M. S. et al. Natural combinatorial peptide libraries in cyanobacterial symbionts of marine ascidians. Nat. Chem. Biol. 2, 729–735 (2006).

CAS  PubMed  Google Scholar 

Donia, M. S., Ravel, J. & Schmidt, E. W. A global assembly line for cyanobactins. Nat. Chem. Biol. 4, 341–343 (2008).

CAS  PubMed  PubMed Central  Google Scholar 

Ge, Y. et al. Insights into the mechanism of the cyanobactin heterocyclase enzyme. Biochemistry 58, 2125–2132 (2019).

CAS  PubMed  Google Scholar 

Zallot, R., Oberg, N. & Gerlt, J. A. Discovery of new enzymatic functions and metabolic pathways using genomic enzymology web tools. Curr. Opin. Biotechnol. 69, 77–90 (2021).

CAS  PubMed  PubMed Central  Google Scholar 

Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P. L. & Ideker, T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27, 431–432 (2011).

CAS  PubMed  Google Scholar 

Zallot, R., Oberg, N. & Gerlt, J. A. The EFI web resource for genomic enzymology tools: leveraging protein, genome, and metagenome databases to discover novel enzymes and metabolic pathways. Biochemistry 58, 4169–4182 (2019).

CAS  PubMed  Google Scholar 

Truman, A. W. Cyclisation mechanisms i

留言 (0)

沒有登入
gif