JP1, a polypeptide specifically targeting integrin αVβ3, ameliorates choroidal neovascularization and diabetic retinopathy in mice

Yun JH. Hepatocyte growth factor prevents pericyte loss in diabetic retinopathy. Microvasc Res. 2021;133:104103.

CAS  PubMed  Google Scholar 

Granstam E, Aurell S, Sjövall K, Paul A. Switching anti-VEGF agent for wet AMD: evaluation of impact on visual acuity, treatment frequency and retinal morphology in a real-world clinical setting. Graefes Arch Clin Exp Ophthalmol. 2021;259:2085–93.

CAS  PubMed  PubMed Central  Google Scholar 

Cécile D. Epidemiology of age-related macular degeneration. La Rev du praticien. 2017;67:88–91.

Google Scholar 

Mettu PS, Allingham MJ, Cousins SW. Incomplete response to anti-VEGF therapy in neovascular AMD: Exploring disease mechanisms and therapeutic opportunities. Prog Retin Eye Res. 2020;82:100906.

PubMed  Google Scholar 

Sun X, Yang S, Zhao J. Resistance to anti-VEGF therapy in neovascular age-related macular degeneration: a comprehensive review. Drug Des Dev Ther. 2016;10:1857–67.

Google Scholar 

Ehlken C, Jungmann S, Bhringer D, Agostini HT, Pielen A. Switch of anti-VEGF is an option for nonresponders in the treatment of AMD. Eye. 2014;28:538–45.

CAS  PubMed  PubMed Central  Google Scholar 

Tian Y, Zhang F, Qiu Y, Wang S, Li F, Zhao J, et al. Reduction of choroidal neovascularization via cleavable VEGF antibodies conjugated to exosomes derived from regulatory T cells. Nat Biomed Eng. 2021;5:968–82.

CAS  PubMed  Google Scholar 

Wallsh JO, Gallemore RP. Anti-VEGF-resistant retinal diseases: a review of the latest treatment options. Cells. 2021;10:1049.

CAS  PubMed  PubMed Central  Google Scholar 

Pb A, Nam A, Tacma B, Wudunn AD, Lbc A. The acute and chronic effects of intravitreal anti-vascular endothelial growth factor injections on intraocular pressure: a review. Surv Ophthalmol. 2018;63:281–95.

Google Scholar 

Baek SU, Park IW, Suh W. Long-term intraocular pressure changes after intravitreal injection of bevacizumab. Cutan Ocul Toxicol. 2016;35:310–4.

CAS  PubMed  Google Scholar 

Rayess N, Rahimy E, Storey P, Shah CP, Wolfe JD, Chen E, et al. Postinjection endophthalmitis rates and characteristics following intravitreal bevacizumab, ranibizumab, and aflibercept. Am J Ophthalmol. 2016;165:88–93.

CAS  PubMed  Google Scholar 

Ren C, Hui S, Jiang J, Liu Q, Du Y, He M, et al. The effect of CM082, an oral tyrosine kinase inhibitor, on experimental choroidal neovascularization in rats. J Ophthalmol. 2017;2017:6145651.

PubMed  PubMed Central  Google Scholar 

Kechagia JZ, Ivaska J, Roca-Cusachs P. Integrins as biomechanical sensors of the microenvironment. Nat Rev Mol Cell Biol. 2019;20:1–17.

Google Scholar 

Hu TT, Vanhove M, Porcu M, Van Hove I, Van Bergen T, Jonckx B, et al. The potent small molecule integrin antagonist THR-687 is a promising next-generation therapy for retinal vascular disorders. Exp Eye Res. 2019;180:43–52.

CAS  PubMed  Google Scholar 

Umeda N, Shu K, Akiyama H, Zahn G, Campochiaro PA. Suppression and regression of choroidal neovascularization by systemic administration of an α5β1 integrin antagonist. Mol Pharmacol. 2006;69:1820–8.

CAS  PubMed  Google Scholar 

Ramakrishnan V, Bhaskar V, Law DA, Wong MH, DuBridge RB, Breinberg D, et al. Preclinical evaluation of an anti-alpha5beta1 integrin antibody as a novel anti-angiogenic agent. J Exp Ther Oncol. 2006;5:273–86.

CAS  PubMed  Google Scholar 

Nebbioso M, Lambiase A, Cerini A, Limoli PG, La Cava M, Greco A. Therapeutic approaches with intravitreal injections in geographic atrophy secondary to age-related macular degeneration: current drugs and potential molecules. Int J Mol Sci. 2019;20:1693.

CAS  PubMed Central  Google Scholar 

Askew BC, Furuya T, Edwards DS. Pharmacodynamics and pharmacokinetics of SF0166, a topically administered αvβ3 integrin antagonist, for the treatment of retinal diseases. J Pharmacol Exp Ther. 2018;366:jpet.118.248427.

Google Scholar 

Cao H, Xia W, Shen Q, Hua L, Jian Y, Li A, et al. Role of JWA in acute promyelocytic leukemia cell differentiation and apoptosis triggered by retinoic acid, 12-tetradecanoylphorbol-13-acetate and arsenic trioxide. Chin Sci Bull. 2002;47:834–8.

CAS  Google Scholar 

Chen Y, Huang Y, Huang Y, Xia X, Zhang J, Zhou Y, et al. JWA suppresses tumor angiogenesis via Sp1-activated matrix metalloproteinase-2 and its prognostic significance in human gastric cancer. Carcinogenesis. 2014;35:442–51.

CAS  PubMed  Google Scholar 

Cui J, Shu C, Xu J, Chen D, Zhou J. JP1 suppresses proliferation and metastasis of melanoma through MEK1/2 mediated NEDD4L-SP1-Integrin αvβ3 signaling. Theranostics. 2020;10:8036–50.

CAS  PubMed  PubMed Central  Google Scholar 

Lambert V, Lecomte J, Hansen S, Blacher S, Gonzalez M, Struman I, et al. Laser-induced choroidal neovascularization model to study age-related macular degeneration in mice. Nat Protoc. 2013;8:2197–211.

CAS  PubMed  Google Scholar 

Li L, Zhu M, Wu W, Qin B, Ding D. Brivanib, a multitargeted small-molecule tyrosine kinase inhibitor, suppresses laser-induced CNV in a mouse model of neovascular AMD. J Cell Physiol. 2020;235:1259–73.

CAS  PubMed  Google Scholar 

Lai K, Gong Y, Zhao W, Li L, Jin C. Triptolide attenuates laser-induced choroidal neovascularization via M2 macrophage in a mouse model. Biomed Pharmacother. 2020;129:110312.

CAS  PubMed  Google Scholar 

Bergen TV, Hu TT, Etienne I, Reyns GE, Moons L, Feyen J Neutralization of placental growth factor as a novel treatment option in diabetic retinopathy. Exp Eye Res. 2017:S0014483517304505.

Naderi A, Zahed R, Aghajanpour L, Amoli FA, Lashay A. Long term features of diabetic retinopathy in streptozotocin-induced diabetic Wistar rats. Exp Eye Res. 2019;184:213–20.

CAS  PubMed  Google Scholar 

Indaram M, Ma W, Zhao L, Fariss RN, Rodriguez IR, Wong WT. 7-Ketocholesterol increases retinal microglial migration, activation, and angiogenicity: a potential pathogenic mechanism underlying age-related macular degeneration. Sci Rep. 2015;5:9144.

PubMed  PubMed Central  Google Scholar 

Karlstetter M, Scholz R, Rutar M, Wong WT, Provis JM, Langmann T. Retinal microglia: just bystander or target for therapy? Prog Retin Eye Res. 2015;45:30–57.

PubMed  Google Scholar 

Kinuthia UM, Wolf A, Langmann T. Microglia and inflammatory responses in diabetic retinopathy. Front Immunol. 2020;11:564077.

CAS  PubMed  PubMed Central  Google Scholar 

Yang Y, Liu F, Tang M, Yuan M, Hu A, Zhan Z, et al. Macrophage polarization in experimental and clinical choroidal neovascularization. Sci Rep. 2016;6:30933.

CAS  PubMed  PubMed Central  Google Scholar 

Bretz CA, Divoky V, Prchal J, Kunz E, Simmons AB, Wang H, et al. Erythropoietin signaling increases choroidal macrophages and cytokine expression, and exacerbates choroidal neovascularization. Sci Rep. 2018;8:2161.

PubMed  PubMed Central  Google Scholar 

Yeo NJY, Chan EJJ, Cheung C. Choroidal neovascularization: mechanisms of endothelial dysfunction. Front Pharmacol. 2019;10:1363.

CAS  PubMed  PubMed Central  Google Scholar 

Kim SY, Kambhampati SP, Bhutto IA, Mcleod DS, Kannan RM. Evolution of oxidative stress, inflammation and neovascularization in the choroid and retina in a subretinal lipid induced age-related macular degeneration model. Exp Eye Res. 2020;203:108391.

PubMed  Google Scholar 

Zhao X, Wang R, Xiong J, Yan D, Li A, Wang S, et al. JWA antagonizes paraquat-induced neurotoxicity via activation of Nrf2. Toxicol Lett. 2017;277:32–40.

CAS  PubMed  Google Scholar 

Datta S, Cano M, Ebrahimi K, Wang L, Handa JT. The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD. Prog Retin Eye Res. 2017;60:201–18.

CAS  PubMed  PubMed Central  Google Scholar 

Lier J, Streit WJ, Bechmann I. Beyond activation: characterizing microglial functional phenotypes. Cells. 2021;10:2236.

CAS  PubMed  PubMed Central  Google Scholar 

Kim YJ, Park SY, Koh YJ, Lee JH. Anti-neuroinflammatory effects and mechanism of action of Fructus ligustri lucidi extract in BV2 microglia. Plants. 2021;10:688.

CAS  PubMed  PubMed Central  Google Scholar 

Lu J, Tang Y, Farshidpour M, Cheng Y, Zhang G, Jafarnejad SM, et al. JWA inhibits melanoma angiogenesis by suppressing ILK signaling and is an independent prognostic biomarker for melanoma. Carcinogenesis. 2013;34:2778–88.

CAS  PubMed  Google Scholar 

Chen JJ, Ren YL, Shu CJ, Zhang Y, Chen MJ, Xu J, et al. JP3, an antiangiogenic peptide, inhibits growth and metastasis of gastric cancer through TRIM25/SP1/MMP2 axis. J Exp Clin Cancer Res. 2020;39:118.

PubMed  PubMed Central  Google Scholar 

Capitão M, Soares R. Angiogenesis and inflammation crosstalk in diabetic retinopathy. J Cell Biochem. 2016;117:2443–53.

PubMed  Google Scholar 

Hamdan F, Bigdeli Z, Asghari SM, Sadremomtaz A, Balalaie S. Synthesis of modified RGD-based peptides and their in vitro activity. ChemMedChem. 2019;14:282–8.

CAS  PubMed  Google Scholar 

Semeraro F, Cancarini A, Dell’Omo R, Rezzola S, Romano MR, Costagliola C. Diabetic retinopathy: vascular and inflammatory disease. J Diabetes Res. 2015;2015:1–16.

Google Scholar 

Arroba AI, Valverde Á. Modulation of microglia in the retina: new insights into diabetic retinopathy. Acta Diabetol. 2017;54:527.

PubMed  Google Scholar 

Wang M, Wang X, Zhao L, Ma W, Rodriguez IR, Fariss RN, et al. Macroglia-microglia interactions via TSPO signaling regulates microglial activation in the mouse retina. J Neurosci. 2014;34:3793–806.

CAS  PubMed  PubMed Central  Google Scholar 

Alves CH, Fernandes R, Santiago AR, Ambrósio AF. Microglia contribution to the regulation of the retinal and choroidal vasculature in age-related macular degeneration. Cells. 2020;9:1217.

CAS  PubMed Central  Google Scholar 

Zhang T, Ouyang H, Mei X, Lu B, Yu Z, Chen K, et al. Erianin alleviates diabetic retinopathy by reducing retinal inflammation initiated by microglial cells via inhibiting hyperglycemia-mediated ERK1/2-NF-κB signaling pathway. FASEB J. 2019;33:11776

留言 (0)

沒有登入
gif