Development of efficient 5-ketogluconate production system by Gluconobacter japonicus

Adachi O, Shinagawa E, Matsushita K, Ameyama M (1979) Crystallization and properties of 5-keto-D-gluconate reductase from Gluconobacter suboxydans. Agric Biol Chem 43:75–83. https://doi.org/10.1080/00021369.1979.10863409

Article  CAS  Google Scholar 

Ameyama M, Chiyonobu T, Adachi O (1974) Purification and properties of 5-ketogluconate reductase from Gluconobacter liquefaciens. Agric Biol Chem 38:1377–1382. https://doi.org/10.1080/00021369.1974.10861341

Article  CAS  Google Scholar 

Ameyama M, Shinagawa E, Matsushita K, Adachi O (1985) Solubilization, purification and properties of membrane-bound glycerol dehydrogenase from Gluconobacter industrius. Agric Biol Chem 49:1001–1010. https://doi.org/10.1271/bbb1961.49.1001

Article  CAS  Google Scholar 

Ano Y, Shinagawa E, Adachi O, Toyama H, Yakushi T, Matsushita K (2011) Selective, high conversion of D-glucose to 5-keto-D-gluoconate by Gluconobacter suboxydans. Biosci Biotechnol Biochem 75:586–589. https://doi.org/10.1271/bbb.100701

Article  CAS  PubMed  Google Scholar 

Dulley JR, Grieve PA (1975) A simple technique for eliminating interference by detergents in the Lowry method of protein determination. Anal Biochem 64:136–141. https://doi.org/10.1016/0003-2697(75)90415-7

Article  CAS  PubMed  Google Scholar 

Elfari M, Ha SW, Bremus C, Merfort M, Khodaverdi V, Herrmann U, Sahm H, Görisch H (2005) A Gluconobacter oxydans mutant converting glucose almost quantitatively to 5-keto-D-gluconic acid. Appl Microbiol Biotechnol 66:668–674. https://doi.org/10.1007/s00253-004-1721-4

Article  CAS  PubMed  Google Scholar 

Herrmann U, Merfort M, Jeude M, Bringer-Meyer S, Sahm H (2004) Biotransformation of glucose to 5-keto-D-gluconic acid by recombinant Gluconobacter oxydans DSM 2343. Appl Microbiol Biotechnol 64:86–90. https://doi.org/10.1007/s00253-003-1455-8

Article  CAS  PubMed  Google Scholar 

Inoue H, Nojima H, Okayama H (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96:23–28. https://doi.org/10.1016/0378-1119(90)90336-p

Article  CAS  PubMed  Google Scholar 

McD J, Armstrong J (1964) The molar extinction coefficient of 2,6-dichlorophenol indophenol. Biochim Biophy Acta Gen Subj 86:194–197. https://doi.org/10.1016/0304-4165(64)90180-1

Article  Google Scholar 

Kataoka N, Matsutani M, Yakushi T, Matsushita K (2015) Efficient production of 2,5-diketo-D-gluconate via heterologous expression of 2-ketogluconate dehydrogenase in Gluconobacter japonicus. Appl Environ Microbiol 81:3552–3560. https://doi.org/10.1128/AEM.04176-14

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kataoka N, Saichana N, Matsutani M, Toyama H, Matsushita K, Yakushi T (2022) Characterization of three phylogenetically distinct membrane-bound D-gluconate dehydrogenases of Gluconobacter spp. and their biotechnological application for efficient 2-keto-D-gluconate production. Biosci Biotechnol Biochem https://doi.org/10.1093/bbb/zbac024

Klasen R, Bringer-Meyer S, Sahm H (1995) Biochemical characterization and sequence analysis of the gluconate:NADP 5-oxidoreductase gene from Gluconobacter oxydans. J Bacteriol 177:2637–2643. https://doi.org/10.1128/jb.177.10.2637-2643.1995

Article  CAS  PubMed  PubMed Central  Google Scholar 

Krajewski V, Simic P, Mouncey NJ, Bringer S, Sahm H, Bott M (2010) Metabolic engineering of Gluconobacter oxydans for improved growth rate and growth yield on glucose by elimination of gluconate formation. Appl Environ Microbiol 76:4369–4376. https://doi.org/10.1128/aem.03022-09

Article  CAS  PubMed  PubMed Central  Google Scholar 

Link AJ, Phillips D, Church GM (1997) Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J Bacteriol 179:6228–6237. https://doi.org/10.1128/jb.179.20.6228-6237.1997

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matsushita K, Fujii Y, Ano Y, Toyama H, Shinjoh M, Tomiyama N, Miyazaki T, Sugisawa T, Hoshino T, Adachi O (2003) 5-Keto-D-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in Gluconobacter species. Appl Environ Microbiol 69:1959–1966. https://doi.org/10.1128/AEM.69.4.1959-1966.2003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Matsushita K, Shinagawa E, Adachi O, Ameyama M (1989) Reactivity with ubiquinone of quinoprotein D-glucose dehydrogenase from Gluconobacter suboxydans. J Biochem 105:633–637. https://doi.org/10.1093/oxfordjournals.jbchem.a122716

Article  CAS  PubMed  Google Scholar 

Matsushita K, Toyama H, Adachi O (1994) Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microb Physiol 36:247–301. https://doi.org/10.1016/s0065-2911(08)60181-2

Article  CAS  PubMed  Google Scholar 

Merfort M, Herrmann U, Bringer-Meyer S, Sahm H (2006) High-yield 5-keto-D-gluconic acid formation is mediated by soluble and membrane-bound gluconate-5-dehydrogenases of Gluconobacter oxydans. Appl Microbiol Biotechnol 73:443–451. https://doi.org/10.1007/s00253-006-0467-6

Article  CAS  PubMed  Google Scholar 

Miyazaki T, Tomiyama N, Shinjoh M, Hoshino T (2002) Molecular cloning and functional expression of D-sorbitol dehydrogenase from Gluconobacter suboxydans IFO3255, which requires pyrroloquinoline quinone and hydrophobic protein SldB for activity development in E. coli. Biosci Biotechnol Biochem 66:262–270. https://doi.org/10.1271/bbb.66.262

Article  CAS  PubMed  Google Scholar 

Rauch B, Pahlke J, Schweiger P, Deppenmeier U (2010) Characterization of enzymes involved in the central metabolism of Gluconobacter oxydans. Appl Microbiol Biotechnol 88:711–718. https://doi.org/10.1007/s00253-010-2779-9

Article  CAS  PubMed  Google Scholar 

Saichana I, Moonmangmee D, Adachi O, Matsushita K, Toyama H (2009) Screening of thermotolerant Gluconobacter strains for production of 5-keto-D-gluconic acid and disruption of flavin adenine dinucleotide-containing D-gluconate dehydrogenase. Appl Environ Microbiol 75:4240–4247. https://doi.org/10.1128/AEM.00640-09

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shinagawa E, Ano Y, Yakushi T, Adachi O, Matsushita K (2009) Solubilization, purification, and properties of membrane-bound D-glucono-δ-lactone hydrolase from Gluconobacter oxydans. Biosci Biotechnol Biochem 73:241–244. https://doi.org/10.1271/bbb.80554

Article  CAS  PubMed  Google Scholar 

Shinagawa E, Chiyonobu T, Adachi O, Ameyama M (1976) Distribution and solubilization of particulate gluconate dehydrogenase and particulate 2-ketogluconate dehydrogenase in acetic acid bacteria. Agric Biol Chem 40:475–483. https://doi.org/10.1080/00021369.1976.10862088

Article  CAS  Google Scholar 

Shinagawa E, Matsushita K, Adachi O, Ameyama M (1984) D-Gluconate dehydrogenase, 2-keto-D-gluconate yielding, from Gluconobacter dioxyacetonicus: Purification and characterization. Agric Biol Chem 48:1517–1522. https://doi.org/10.1271/bbb1961.48.1517

Article  CAS  Google Scholar 

Sugisawa T, Hoshino T (2002) Purification and properties of membrane-bound D-sorbitol dehydrogenase from Gluconobacter suboxydans IFO 3255. Biosci Biotechnol Biochem 66:57–64. https://doi.org/10.1271/bbb.66.57

Article  CAS  PubMed  Google Scholar 

Toyama H, Furuya N, Saichana I, Ano Y, Adachi O, Matsushita K (2007) Membrane-bound, 2-keto-D-gluconate-yielding D-gluconate dehydrogenase from “Gluconobacter dioxyacetonicus” IFO 3271: Molecular properties and gene disruption. Appl Environ Microbiol 73:6551–6556. https://doi.org/10.1128/AEM.00493-07

Article  CAS  PubMed  PubMed Central  Google Scholar 

Toyama H, Soemphol W, Moonmangmee D, Adachi O, Matsushita K (2005) Molecular properties of membrane-bound FAD-containing D-sorbitol dehydrogenase from thermotolerant Gluconobacter frateurii isolated from Thailand. Biosci Biotechnol Biochem 69:1120–1129. https://doi.org/10.1271/bbb.69.1120

Article  CAS  PubMed  Google Scholar 

Weenk G, Olijve W, Harder W (1984) Ketogluconate formation by Gluconobacter species. Appl Microbiol Biotechnol 20:400–405. https://doi.org/10.1007/BF00261942

Article  CAS  Google Scholar 

Yakushi T, Fukunari S, Kodama T, Matsutani M, Nina S, Kataoka N, Theeragool G, Matsushita K (2018) Role of a membrane-bound aldehyde dehydrogenase complex AldFGH in acetic acid fermentation with Acetobacter pasteurianus SKU1108. Appl Microbiol Biotechnol 102:4549–4561. https://doi.org/10.1007/s00253-018-8940-6

Article  CAS  PubMed  Google Scholar 

Yuan J, Wu M, Lin J, Yang L (2016a) Combinatorial metabolic engineering of industrial Gluconobacter oxydans DSM2343 for boosting 5-keto-D-gluconic acid accumulation. BMC Biotechnol 16:42. https://doi.org/10.1186/s12896-016-0272-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yuan J, Wu M, Lin J, Yang L (2016b) Enhancement of 5-keto-D-gluconate production by a recombinant Gluconobacter oxydans using a dissolved oxygen control strategy. J Biosci Bioeng 122:10–16. https://doi.org/10.1016/j.jbiosc.2015.12.006

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif