Transcriptome analysis of peripheral blood mononuclear cells in patients with type 1 diabetes mellitus

H. Sun, P. Saeedi, S. Karuranga, M. Pinkepank, K. Ogurtsova, B.B. Duncan, C. Stein, A. Basit, J.C.N. Chan, J.C. Mbanya, M.E. Pavkov, A. Ramachandaran, S.H. Wild, S. James, W.H. Herman, P. Zhang, C. Bommer, S. Kuo, E.J. Boyko, D.J. Magliano, (2022) IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 183(109119). https://doi.org/10.1016/j.diabres.2021.109119

A. Katsarou, S. Gudbjörnsdottir, A. Rawshani, D. Dabelea, E. Bonifacio, B.J. Anderson, L.M. Jacobsen, D.A. Schatz, Å Lernmark, Type 1 diabetes mellitus. Nat. Rev. Dis. Primers. 31, 7016 (2017). https://doi.org/10.1038/nrdp.2017.16

R. Barnett, Type 1 diabetes. Lancet 391(10117), 195 (2018). https://doi.org/10.1016/s0140-6736(18)30024-2

Article  PubMed  Google Scholar 

J.S. Skyler, Hope vs hype: where are we in type 1 diabetes. Diabetologia 61(3), 509–516 (2018). https://doi.org/10.1007/s00125-017-4530-x

Article  PubMed  Google Scholar 

L.A. DiMeglio, C. Evans-Molina, R.A. Oram, Type 1 diabetes. Lancet 391(10138), 2449–2462 (2018). https://doi.org/10.1016/s0140-6736(18)31320-5

Article  PubMed  PubMed Central  Google Scholar 

X. Li, M. Liao, J. Guan, L. Zhou, R. Shen, M. Long, J. Shao, Identification of key genes and pathways in peripheral blood mononuclear cells of type 1 diabetes mellitus by integrated bioinformatics analysis. Diabetes Metab. J. (2022). https://doi.org/10.4093/dmj.2021.0018

P. Sen, E. Kemppainen, M. Orešič, Perspectives on systems modeling of human peripheral blood mononuclear cells. Front. Mol. Biosci. 4, 96 (2017). https://doi.org/10.3389/fmolb.2017.00096

R. Bomprezzi, M. Ringnér, S. Kim, M.L. Bittner, J. Khan, Y. Chen, A. Elkahloun, A. Yu, B. Bielekova, P.S. Meltzer, R. Martin, H.F. McFarland, J.M. Trent, Gene expression profile in multiple sclerosis patients and healthy controls: identifying pathways relevant to disease. Hum. Mol. Genet 12(17), 2191–2199 (2003). https://doi.org/10.1093/hmg/ddg221

Article  CAS  PubMed  Google Scholar 

S. Axelsson, M. Faresjö, M. Hedman, J. Ludvigsson, R. Casas, Cryopreserved peripheral blood mononuclear cells are suitable for the assessment of immunological markers in type 1 diabetic children. Cryobiology 57(3), 201–208 (2008). https://doi.org/10.1016/j.cryobiol.2008.08.001

Article  CAS  PubMed  Google Scholar 

E.C. Kaizer, C.L. Glaser, D. Chaussabel, J. Banchereau, V. Pascual, P.C. White, Gene expression in peripheral blood mononuclear cells from children with diabetes. J. Clin. Endocrinol. Metab. 92(9), 3705–3711 (2007). https://doi.org/10.1210/jc.2007-0979

Article  CAS  PubMed  Google Scholar 

S.C. Kent, Y. Chen, S.M. Clemmings, V. Viglietta, N.S. Kenyon, C. Ricordi, B. Hering, D.A. Hafler, Loss of IL-4 secretion from human type 1a diabetic pancreatic draining lymph node NKT cells. J. Immunol. 175(7), 4458–4464 (2005). https://doi.org/10.4049/jimmunol.175.7.4458

Article  CAS  PubMed  Google Scholar 

P.A. Ott, B.R. Berner, B.A. Herzog, R. Guerkov, N.L. Yonkers, I. Durinovic-Bello, M. Tary-Lehmann, P.V. Lehmann, D.D. Anthony, CD28 costimulation enhances the sensitivity of the ELISPOT assay for detection of antigen-specific memory effector CD4 and CD8 cell populations in human diseases. J. Immunol. Methods 285(2), 223–235 (2004). https://doi.org/10.1016/j.jim.2003.12.007

Article  CAS  PubMed  Google Scholar 

P. Sen, A.M. Dickens, M.A. López-Bascón, T. Lindeman, E. Kemppainen, S. Lamichhane, T. Rönkkö, J. Ilonen, J. Toppari, R. Veijola, H. Hyöty, T. Hyötyläinen, M. Knip, M. Orešič, Metabolic alterations in immune cells associate with progression to type 1 diabetes. Diabetologia 63(5), 1017–1031 (2020). https://doi.org/10.1007/s00125-020-05107-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

J.T. Leek, W.E. Johnson, H.S. Parker, A.E. Jaffe, J.D. Storey, The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28(6), 882–883 (2012). https://doi.org/10.1093/bioinformatics/bts034

Article  CAS  PubMed  PubMed Central  Google Scholar 

M.E. Ritchie, B. Phipson, D. Wu, Y. Hu, C.W. Law, W. Shi, G.K. Smyth, limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7), e47 (2015). https://doi.org/10.1093/nar/gkv007

Article  CAS  PubMed  PubMed Central  Google Scholar 

G. Yu, L.G. Wang, Y. Han, Q.Y. He, clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16(5), 284–287 (2012). https://doi.org/10.1089/omi.2011.0118

Article  CAS  PubMed  PubMed Central  Google Scholar 

P. Langfelder, S. Horvath, WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008). https://doi.org/10.1186/1471-2105-9-559

D. Szklarczyk, A.L. Gable, K.C. Nastou, D. Lyon, R. Kirsch, S. Pyysalo, N.T. Doncheva, M. Legeay, T. Fang, P. Bork, L.J. Jensen, C. von Mering, The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49(D1), D605–d612 (2021). https://doi.org/10.1093/nar/gkaa1074

Article  CAS  PubMed  Google Scholar 

P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, N. Amin, B. Schwikowski, T. Ideker, Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11), 2498–2504 (2003). https://doi.org/10.1101/gr.1239303

Article  CAS  PubMed  PubMed Central  Google Scholar 

S. Engebretsen, J. Bohlin, Statistical predictions with glmnet. Clin. Epigenetics 11(1), 123 (2019). https://doi.org/10.1186/s13148-019-0730-1

Article  PubMed  PubMed Central  Google Scholar 

A.J. McEligot, V. Poynor, R. Sharma, A. Panangadan, Logistic LASSO Regression for Dietary Intakes and Breast Cancer. Nutrients 12, 9 (2020). https://doi.org/10.3390/nu12092652

O. Fornes, J.A. Castro-Mondragon, A. Khan, R. van der Lee, X. Zhang, P.A. Richmond, B.P. Modi, S. Correard, M. Gheorghe, D. Baranašić, W. Santana-Garcia, G. Tan, J. Chèneby, B. Ballester, F. Parcy, A. Sandelin, B. Lenhard, W.W. Wasserman, A. Mathelier, JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res 48(D1), D87–d92 (2020). https://doi.org/10.1093/nar/gkz1001

Article  CAS  PubMed  Google Scholar 

A. Subramanian, P. Tamayo, V.K. Mootha, S. Mukherjee, B.L. Ebert, M.A. Gillette, A. Paulovich, S.L. Pomeroy, T.R. Golub, E.S. Lander, J.P. Mesirov, Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102(43), 15545–15550 (2005). https://doi.org/10.1073/pnas.0506580102

Article  CAS  PubMed  PubMed Central  Google Scholar 

A.S. Santos, E. Cunha-Neto, N.V. Gonfinetti, F.B. Bertonha, P. Brochet, A. Bergon, C.A. Moreira-Filho, C. Chevillard, M.E.R. da Silva, Prevalence of Inflammatory Pathways Over Immuno-Tolerance in Peripheral Blood Mononuclear Cells of Recent-Onset Type 1 Diabetes. Front Immunol 12, 765264 (2021). https://doi.org/10.3389/fimmu.2021.765264

G.S. Eisenbarth, Type 1 diabetes: molecular, cellular and clinical immunology. Adv. Exp. Med. Biol. 552, 306–10 (2004).

Y.J. Lan, N.B. Sam, M.H. Cheng, H.F. Pan, J. Gao, Progranulin as a Potential Therapeutic Target in Immune-Mediated Diseases. J. Inflamm. Res. 14, 6543–146556 (2021). https://doi.org/10.2147/jir.S339254

G. Geng, Z. Zhang, L. Cheng, Identification of a Multi-Long Noncoding RNA Signature for the Diagnosis of Type 1 Diabetes Mellitus. Front. Bioeng. Biotechnol. 8, 553 (2020). https://doi.org/10.3389/fbioe.2020.00553

Y. Gao, R. Zhang, S. Dai, X. Zhang, X. Li, C. Bai, Role of TGF-β/Smad pathway in the transcription of pancreas-specific genes during Beta cell differentiation. Front. Cell Dev. Biol. 7, 351 (2019). https://doi.org/10.3389/fcell.2019.00351

W.P. Miller, C. Yang, M.L. Mihailescu, J.A. Moore, W. Dai, A.J. Barber, M.D. Dennis, Deletion of the Akt/mTORC1 repressor REDD1 prevents visual dysfunction in a rodent model of type 1 diabetes. Diabetes 67(1), 110–119 (2018). https://doi.org/10.2337/db17-0728

Article  CAS  PubMed  Google Scholar 

G. Wang, Y. Yan, Z. Zheng, T., Zhang The mechanism of hsa-miR-424-5 combining PD-1 through mTORC signaling pathway to stimulate immune effect and participate in Type 1 diabetes. Biosci. Rep. 40, 3 (2020). https://doi.org/10.1042/bsr20193800

Y.M. Kim, D.H. Kim, dRAGging amino acid-mTORC1 signaling by SH3BP4. Mol. Cells 35(1), 1–6 (2013). https://doi.org/10.1007/s10059-013-2249-1

Article  CAS  PubMed  Google Scholar 

B. Xu, M. Gogol, K. Gaudenz, J.L. Gerton, Improved transcription and translation with L-leucine stimulation of mTORC1 in Roberts syndrome. BMC Genomics 17, 25 (2016). https://doi.org/10.1186/s12864-015-2354-y

A.M. Daulat, F. Bertucci, S. Audebert, A. Sergé, P. Finetti, E. Josselin, R. Castellano, D. Birnbaum, S. Angers, J.P. Borg, PRICKLE1 contributes to cancer cell dissemination through its interaction with mTORC2. Dev. Cell 37(4), 311–325 (2016). https://doi.org/10.1016/j.devcel.2016.04.011

Article  CAS  PubMed  Google Scholar 

M. Blandino-Rosano, R. Barbaresso, M. Jimenez-Palomares, M. Bozadjieva N., J.P. Werneck-de-Castro, M. Hatanaka, R.G. Mirmira, N. Sonenberg, M. Liu, M.A. Rüegg, M.N. Hall, E. Bernal-Mizrachi, Loss of mTORC1 signalling impairs β-cell homeostasis and insulin processing. Nat. Commun. 8, 16014 (2017). https://doi.org/10.1038/ncomms16014

T. Suto, T. Karonitsch, The immunobiology of mTOR in autoimmunity. J Autoimmun 110, 102373 (2020). https://doi.org/10.1016/j.jaut.2019.102373

C.P. Martins, L.A. New, E.C. O’Connor, D.M. Previte, K.R. Cargill, I.L. Tse, S. Sims-Lucas, J.D. Piganelli, Glycolys is inhibition induces functional and metabolic exhaustion of CD4(+) T cells in Type 1 Diabetes. Front. Immunol. 12, 669456 (2021). https://doi.org/10.3389/fimmu.2021.669456

X. Bi, F. Li, S. Liu, Y. Jin, X. Zhang, T. Yang, Y. Dai, X. Li, A.Z. Zhao, ω-3 polyunsaturated fatty acids ameliorate type 1 diabetes and autoimmunity. J. Clin. Invest 127(5), 1757–1771 (2017). https://doi.org/10.1172/jci87388

Article  PubMed  PubMed Central  Google Scholar 

K.M. Irvine, P. Gallego, X. An, S.E. Best, G. Thomas, C. Wells, M. Harris, A. Cotterill, R. Thomas, Peripheral blood monocyte gene expression profile clinically stratifies patients with recent-onset type 1 diabetes. Diabetes 61(5), 1281–1290 (2012). https://doi.org/10.2337/db11-1549

Article  CAS  PubMed  PubMed Central  Google Scholar 

J. Turnbull, E. Tiberia, S. Pereira, X. Zhao, N. Pencea, A.L. Wheeler, W.Q. Yu, A. Ivovic, T. Naranian, N. Israelian, A. Draginov, M. Piliguian, P.W. Frankland, P. Wang, C.A. Ackerley, A. Giacca, B.A. Minassian, Deficiency of a glycogen synthase-associated protein, Epm2aip1, causes decreased glycogen synthesis and hepatic insulin resistance. J. Biol. Chem. 288(48), 34627–34637 (2013). https://doi.org/10.1074/jbc.M113.483198

Article  CAS  PubMed  PubMed Central  Google Scholar 

K. Okamoto, N. Iwasaki, C. Nishimura, K. Doi, E. Noiri, S. Nakamura, M. Takizawa, M. Ogata, R. Fujimaki, N. Grarup, C. Pisinger, K. Borch-Johnsen, T. Lauritzen, A. Sandbaek, T. Hansen, K. Yasuda, H. Osawa, K. Nanjo, T. Kadowaki, M. Kasuga, O. Pedersen, T. Fujita, N. Kamatani, Y. Iwamoto, K. Tokunaga, Identification of KCNJ15 as a susceptibility gene in Asian patients with type 2 diabetes mellitus. Am. J. Hum. Genet 86(1), 54–64 (2010). https://doi.org/10.1016/j.ajhg.2009.12.009

Article  CAS  PubMed  PubMed Central  Google Scholar 

K. Okamoto, N. Iwasaki, K. Doi, E. Noiri, Y. Iwamoto, Y. Uchigata, T. Fujita, K. Tokunaga, Inhibition of glucose-stimulated insulin secretion by KCNJ15, a newly identified susceptibility gene for type 2 diabetes. Diabetes 61(7), 1734–1741 (2012). https://doi.org/10.2337/db11-1201

Article  CAS  PubMed  PubMed Central  Google Scholar 

Z. Hawi, T.D. Cummins, J. Tong, B. Johnson, R. Lau, W. Samarrai, M.A. Bellgrove, The molecular genetic architecture of attention deficit hyperactivity disorder. Mol. Psychiatry 20(3), 289–297 (2015). https://doi.org/10.1038/mp.2014.183

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif