Bile acids and the gut microbiota: metabolic interactions and impacts on disease

Turnbaugh, P. J. et al. The Human Microbiome Project. Nature 449, 804–810 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fuchs, C. D. & Trauner, M. Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology. Nat. Rev. Gastroenterol. Hepatol. https://doi.org/10.1038/s41575-021-00566-7 (2022).

Article  PubMed  Google Scholar 

Hamilton, J. P. et al. Human cecal bile acids: concentration and spectrum. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G256–G263 (2007).

Article  CAS  PubMed  Google Scholar 

Jones, B. V., Begley, M., Hill, C., Gahan, C. G. M. & Marchesi, J. R. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc. Natl Acad. Sci. USA 105, 13580–13585 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hofmann, A. F. The enterohepatic circulation of bile acids in mammals: form and functions. Front. Biosci. 14, 2584–2598 (2009).

Article  CAS  Google Scholar 

Thakare, R., Alamoudi, J. A., Gautam, N., Rodrigues, A. D. & Alnouti, Y. Species differences in bile acids I. Plasma and urine bile acid composition. J. Appl. Toxicol. 38, 1323–1335 (2018).

Article  CAS  PubMed  Google Scholar 

Wahlström, A. et al. Induction of farnesoid X receptor signaling in germ-free mice colonized with a human microbiota. J. Lipid Res. 58, 412–419 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Li, J. & Dawson, P. A. Animal models to study bile acid metabolism. Biochim. Biophys. Acta 1865, 895–911 (2019).

Article  CAS  Google Scholar 

Honda, A. et al. Regulation of bile acid metabolism in mouse models with hydrophobic bile acid composition. J. Lipid Res. 61, 54–69 (2020).

Article  CAS  PubMed  Google Scholar 

Guzior, D. V. & Quinn, R. A. Review: microbial transformations of human bile acids. Microbiome 9, 140 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Foley, M. H. et al. Lactobacillus bile salt hydrolase substrate specificity governs bacterial fitness and host colonization. Proc. Natl Acad. Sci. USA 118, e2017709118 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eldere, J. V., Celis, P., Pauw, G. D., Lesaffre, E. & Eyssen, H. Tauroconjugation of cholic acid stimulates 7 alpha-dehydroxylation by fecal bacteria. Appl. Environ. Microbiol. 62, 656–661 (1996).

Article  PubMed  PubMed Central  Google Scholar 

Tanaka, H., Hashiba, H., Kok, J. & Mierau, I. Bile salt hydrolase of Bifidobacterium longum — biochemical and genetic characterization. Appl. Environ. Microbiol. 66, 2502–2512 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ridlon, J. M., Kang, D.-J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241–259 (2006).

Article  CAS  PubMed  Google Scholar 

White, B. A., Lipsky, R. L., Fricke, R. J. & Hylemon, P. B. Bile acid induction specificity of 7α-dehydroxylase activity in an intestinal Eubacterium species. Steroids 35, 103–109 (1980).

Article  CAS  PubMed  Google Scholar 

Funabashi, M. et al. A metabolic pathway for bile acid dehydroxylation by the gut microbiome. Nature 582, 566–570 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Streidl, T. et al. The gut bacterium Extibacter muris produces secondary bile acids and influences liver physiology in gnotobiotic mice. Gut Microbes 13, 1–21 (2021).

Article  PubMed  Google Scholar 

Marion, S. et al. Biogeography of microbial bile acid transformations along the murine gut. J. Lipid Res. 61, 1450–1463 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wahlström, A., Sayin, S. I., Marschall, H.-U. & Bäckhed, F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 24, 41–50 (2016).

Article  PubMed  Google Scholar 

Devlin, A. S. & Fischbach, M. A. A biosynthetic pathway for a prominent class of microbiota-derived bile acids. Nat. Chem. Biol. 11, 685–690 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Van Eldere, J., Robben, J., De Pauw, G., Merckx, R. & Eyssen, H. Isolation and identification of intestinal steroid-desulfating bacteria from rats and humans. Appl. Environ. Microbiol. 54, 2112–2117 (1988).

Article  PubMed  PubMed Central  Google Scholar 

Korpela, J. T., Fotsis, T. & Adlercreutz, H. Multicomponent analysis of bile acids in faeces by anion exchange and capillary column gas-liquid chromatography: application in oxytetracycline treated subjects. J. Steroid Biochem. 25, 277–284 (1986).

Article  CAS  PubMed  Google Scholar 

Dawson, P. A. & Karpen, S. J. Intestinal transport and metabolism of bile acids. J. Lipid Res. 56, 1085–1099 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Quinn, R. A. et al. Global chemical impact of the microbiome includes novel bile acid conjugations. Nature 579, 123–129 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hoffmann, M. A. et al. High-confidence structural annotation of metabolites absent from spectral libraries. Nat. Biotechnol. 40, 411–421 (2022).

Article  CAS  PubMed  Google Scholar 

Gentry, E. et al. A synthesis-based reverse metabolomics approach for the discovery of chemical structures from humans and animals. Res. Sq. https://doi.org/10.21203/rs.3.rs-820302/v1 (2021).

Article  Google Scholar 

Wang, M. et al. Mass spectrometry searches using MASST. Nat. Biotechnol. 38, 19–26 (2020).

Article  Google Scholar 

Lucas, L. N. et al. Dominant bacterial phyla from the human gut show widespread ability to transform and conjugate bile acids. mSystems https://doi.org/10.1128/mSystems.00805-21 (2021).

Article  PubMed  Google Scholar 

Antunes, L. C. M. et al. Effect of antibiotic treatment on the intestinal metabolome. Antimicrob. Agents Chemother. 55, 1494–1503 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Swann, J. R. et al. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proc. Natl Acad. Sci. USA 108, 4523–4530 (2011).

Article  CAS  PubMed  Google Scholar 

Theriot, C. M. et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat. Commun. 5, 3114 (2014).

Article  PubMed  Google Scholar 

Vrieze, A. et al. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J. Hepatol. 60, 824–831 (2014).

Article  CAS  PubMed  Google Scholar 

Kuno, T., Hirayama-Kurogi, M., Ito, S. & Ohtsuki, S. Reduction in hepatic secondary bile acids caused by short-term antibiotic-induced dysbiosis decreases mouse serum glucose and triglyceride levels. Sci. Rep. 8, 1253 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Dethloff, F. et al. Paroxetine administration affects microbiota and bile acid levels in mice. Front. Psychiatry 11, 518 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Molina-Molina, E. et al. Exercising the hepatobiliary-gut axis. The impact of physical activity performance. Eur. J. Clin. Invest. 48, e12958 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Ca, Y., Bj, M. & Jb, W. Chronic physical activity alters hepatobiliary excretory function in rats. J. Pharmacol. Exp. Ther. 265, 321–327 (1993).

Google Scholar 

Meissner, M. et al. Voluntary wheel running increases bile acid as well as cholesterol excretion and decreases atherosclerosis in hypercholesterolemic mice. Atherosclerosis 218, 323–329 (2011).

Article  CAS  PubMed  Google Scholar 

Wertheim, B. C. et al. Physical activity as a determinant of fecal bile acid levels. Cancer Epidemiol. Biomark. Prev. 18, 1591–1598 (2009).

Article  CAS  Google Scholar 

Danese, E. et al. Middle-distance running acutely influences the concentration and composition of serum bile

留言 (0)

沒有登入
gif