Hydrogel interfaces for merging humans and machines

Jeong, J.-W. et al. Soft materials in neuroengineering for hard problems in neuroscience. Neuron 86, 175–186 (2015).

Article  CAS  Google Scholar 

Lacour, S. P., Courtine, G. & Guck, J. Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 1, 16063 (2016).

Article  CAS  Google Scholar 

Salatino, J. W., Ludwig, K. A., Kozai, T. D. & Purcell, E. K. Glial responses to implanted electrodes in the brain. Nat. Biomed. Eng. 1, 862–877 (2017).

Article  CAS  Google Scholar 

Lotti, F., Ranieri, F., Vadalà, G., Zollo, L. & Di Pino, G. Invasive intraneural interfaces: foreign body reaction issues. Front. Neurosci. 11, 497 (2017).

Article  Google Scholar 

Yuk, H., Lu, B. & Zhao, X. Hydrogel bioelectronics. Chem. Soc. Rev. 48, 1642–1667 (2019).

Article  CAS  Google Scholar 

Frank, J. A., Antonini, M.-J. & Anikeeva, P. Next-generation interfaces for studying neural function. Nat. Biotechnol. 37, 1013–1023 (2019).

Article  CAS  Google Scholar 

Kerner, W. Implantable glucose sensors: present status and future developments. Exp. Clin. Endocrinol. Diabetes 109, S341–S346 (2001).

Article  CAS  Google Scholar 

Moussy, F. in Proc. IEEE Sensors 2002 vol. 1 270–273 (IEEE, 2002).

Ward, W. K. A review of the foreign-body response to subcutaneously-implanted devices: the role of macrophages and cytokines in biofouling and fibrosis. J. Diabetes Sci. Technol. 2, 768–777 (2008).

Article  Google Scholar 

Farra, R. et al. First-in-human testing of a wirelessly controlled drug delivery microchip. Sci. Transl Med. 4, 122ra121 (2012).

Article  Google Scholar 

Ross, P., Milburn, J., Reith, D., Wiltshire, E. & Wheeler, B. Clinical review: insulin pump-associated adverse events in adults and children. Acta Diabetol. 52, 1017–1024 (2015).

Article  CAS  Google Scholar 

Heinemann, L. et al. Insulin pump risks and benefits: a clinical appraisal of pump safety standards, adverse event reporting, and research needs: a joint statement of the European Association for the Study of Diabetes and the American Diabetes Association Diabetes Technology Working Group. Diabetes Care 38, 716–722 (2015).

Article  CAS  Google Scholar 

Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).

Article  CAS  Google Scholar 

Kim, D. H., Xiao, J., Song, J., Huang, Y. & Rogers, J. A. Stretchable, curvilinear electronics based on inorganic materials. Adv. Mater. 22, 2108–2124 (2010).

Article  CAS  Google Scholar 

Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011).

Article  CAS  Google Scholar 

Kim, D.-H., Ghaffari, R., Lu, N. & Rogers, J. A. Flexible and stretchable electronics for biointegrated devices. Annu. Rev. Biomed. Eng. 14, 113–128 (2012).

Article  CAS  Google Scholar 

Hong, G. & Lieber, C. M. Novel electrode technologies for neural recordings. Nat. Rev. Neurosci. 20, 330–345 (2019).

Article  CAS  Google Scholar 

Jeong, J. W. et al. Materials and optimized designs for human‐machine interfaces via epidermal electronics. Adv. Mater. 25, 6839–6846 (2013).

Article  CAS  Google Scholar 

Deng, J. et al. Electrical bioadhesive interface for bioelectronics. Nat. Mater. 20, 229–236 (2021).

Article  CAS  Google Scholar 

Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016).

Article  CAS  Google Scholar 

Chen, R., Canales, A. & Anikeeva, P. Neural recording and modulation technologies. Nat. Rev. Mater. 2, 16093 (2017).

Article  CAS  Google Scholar 

Feiner, R. & Dvir, T. Tissue–electronics interfaces: from implantable devices to engineered tissues. Nat. Rev. Mater. 3, 17076 (2018).

Article  CAS  Google Scholar 

Anderson, J. M., Rodriguez, A. & Chang, D. T. Foreign body reaction to biomaterials. Semin. Immunol. 20, 86–100 (2008).

Article  CAS  Google Scholar 

Rolfe, B. et al. in Regenerative Medicine and Tissue Engineering: Cells and Biomaterials (ed. Eberli, D.) (IntechOpen, 2011)

Anderson, J. M. Biological responses to materials. Annu. Rev. Mater. Res. 31, 81–110 (2001).

Article  CAS  Google Scholar 

Voskerician, G. et al. Biocompatibility and biofouling of MEMS drug delivery devices. Biomaterials 24, 1959–1967 (2003).

Article  CAS  Google Scholar 

Wick, G. et al. The immunology of fibrosis. Annu. Rev. Immunol. 31, 107–135 (2013).

Article  CAS  Google Scholar 

Harding, J. L. & Reynolds, M. M. Combating medical device fouling. Trends Biotechnol. 32, 140–146 (2014).

Article  CAS  Google Scholar 

Sadtler, K. et al. Design, clinical translation and immunological response of biomaterials in regenerative medicine. Nat. Rev. Mater. 1, 16040 (2016).

Article  CAS  Google Scholar 

Wichterle, O. & Lim, D. Hydrophilic gels for biological use. Nature 185, 117–118 (1960).

Article  Google Scholar 

Lee, K. Y. & Mooney, D. J. Hydrogels for tissue engineering. Chem. Rev. 101, 1869–1880 (2001).

Article  CAS  Google Scholar 

Peppas, N. A., Hilt, J. Z., Khademhosseini, A. & Langer, R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 18, 1345–1360 (2006).

Article  CAS  Google Scholar 

Zhao, X. et al. Soft materials by design: unconventional polymer networks give extreme properties. Chem. Rev. 212, 4309–4372 (2021).

Article  Google Scholar 

Calvert, P. Hydrogels for soft machines. Adv. Mater. 21, 743–756 (2009).

Article  CAS  Google Scholar 

Seliktar, D. Designing cell-compatible hydrogels for biomedical applications. Science 336, 1124–1128 (2012).

Article  CAS  Google Scholar 

Zhao, X. Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 10, 672–687 (2014).

Article  CAS  Google Scholar 

Zhang, Y. S. & Khademhosseini, A. Advances in engineering hydrogels. Science 356, eaaf3627 (2017).

Article  Google Scholar 

Demitri, C. et al. Hydrogel based tissue mimicking phantom for in-vitro ultrasound contrast agents studies. J. Biomed. Mater. Res. B Appl. Biomater. 87, 338–345 (2008).

Article  Google Scholar 

Kirschner, C. M. & Anseth, K. S. Hydrogels in healthcare: from static to dynamic material microenvironments. Acta Mater. 61, 931–944 (2013).

Article  CAS  Google Scholar 

Xue, K. et al. Hydrogels as emerging materials for translational biomedicine. Adv. Ther. 2, 1800088 (2019).

Article  Google Scholar 

Aswathy, S., Narendrakumar, U. & Manjubala, I. Commercial hydrogels for biomedical applications. Heliyon 6, e03719 (2020).

Article  CAS  Google Scholar 

Mandal, A., Clegg, J. R., Anselmo, A. C. & Mitragotri, S. Hydrogels in the clinic. Bioeng. Transl Med. 5, e10158 (2020).

Article  CAS  Google Scholar 

Alba, N. A., Sclabassi, R. J., Sun, M. & Cui, X. T. Novel hydrogel-based preparation-free EEG electrode. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 415–423 (2010).

Article  Google Scholar 

Green, R. A., Baek, S., Poole-Warren, L. A. & Martens, P. J. Conducting polymer-hydrogels for medical electrode applications. Sci. Technol. Adv. Mater. 11, 014107 (2010).

Article  Google Scholar 

Johnson, M. I. Transcutaneous electrical nerve stimulation (TENS). eLS https://doi.org/10.1002/9780470015902.a0024044 (2012).

Article  Google Scholar 

Nagamine, K. et al. Noninvasive sweat-lactate biosensor emplsoying a hydrogel-based touch pad. Sci. Rep. 9, 10102 (2019).

Article  Google Scholar 

Zhao, F. et al. Ultra-simple wearable local sweat volume monitoring patch based on swellable hydrogels. Lab Chip 20, 168–174 (2020).

Article  CAS  Google Scholar 

Bariya, M., Nyein, H. Y. Y. & Javey, A. Wearable sweat sensors. Nat. Electron. 1, 160–171 (2018).

Article  Google Scholar 

Yao, H., Marcheselli, C., Afanasiev, A., Lähdesmäki, I. & Parviz, B. in IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS) 769–772 (IEEE, 2012).

Park, J. et al. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci. Adv. 4, eaap9841 (2018).

Article  Google Scholar 

Kim, J. et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat. Commun. 8, 14997 (2017).

Article  Google Scholar 

Yin, R. et al. Soft transparent graphene contact lens electrodes for conformal full-cornea recording of electroretinogram. Nat. Commun. 9, 2334 (2018).

留言 (0)

沒有登入
gif