Machine learning for a sustainable energy future

Davidson, D. J. Exnovating for a renewable energy transition. Nat. Energy 4, 254–256 (2019).

Article  Google Scholar 

Horowitz, C. A. Paris agreement. Int. Leg. Mater. 55, 740–755 (2016).

Article  Google Scholar 

International Energy Agency 2018 World Energy Outlook: Executive Summary https://www.iea.org/reports/world-energy-outlook-2018 (OECD/IEA, 2018).

Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nat. Mater. 16, 16–22 (2017).

Article  Google Scholar 

Maine, E. & Garnsey, E. Commercializing generic technology: the case of advanced materials ventures. Res. Policy 35, 375–393 (2006).

Article  Google Scholar 

De Luna, P., Wei, J., Bengio, Y., Aspuru-Guzik, A. & Sargent, E. Use machine learning to find energy materials. Nature 552, 23–27 (2017).

Article  Google Scholar 

Wang, H., Lei, Z., Zhang, X., Zhou, B. & Peng, J. A review of deep learning for renewable energy forecasting. Energy Convers. Manag. 198, 111799–111814 (2019).

Article  Google Scholar 

Yao, Z. et al. Inverse design of nanoporous crystalline reticular materials with deep generative models. Nat. Mach. Intell. 3, 76–86 (2021).

Article  Google Scholar 

Rosen, A. S. et al. Machine learning the quantum-chemical properties of metal–organic frameworks for accelerated materials discovery. Matter 4, 1578–1597 (2021).

Article  CAS  Google Scholar 

Jordan, M. I. & Mitchell, T. M. Machine learning: trends, perspectives, and prospects. Science 349, 255–260 (2015).

Article  CAS  Google Scholar 

Personal, E., Guerrero, J. I., Garcia, A., Peña, M. & Leon, C. Key performance indicators: a useful tool to assess Smart Grid goals. Energy 76, 976–988 (2014).

Article  Google Scholar 

Helmus, J. & den Hoed, R. Key performance indicators of charging infrastructure. World Electr. Veh. J. 8, 733–741 (2016).

Article  Google Scholar 

Struck, M.-M. Vaccine R&D success rates and development times. Nat. Biotechnol. 14, 591–593 (1996).

Article  CAS  Google Scholar 

Moore, G. E. Cramming more components onto integrated circuits. Electronics 38, 114–116 (1965).

Google Scholar 

Wetterstrand, K. A. DNA sequencing costs: data. NHGRI Genome Sequencing Program (GSP) www.genome.gov/sequencingcostsdata (2020).

Rajkomar, A., Dean, J. & Kohane, I. Machine learning in medicine. N. Engl. J. Med. 380, 1347–1358 (2019).

Article  Google Scholar 

Jeong, J. et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592, 381–385 (2021).

Article  CAS  Google Scholar 

NREL. Best research-cell efficiency chart. NREL https://www.nrel.gov/pv/cell-efficiency.html (2021).

Burger, B. et al. A mobile robotic chemist. Nature 583, 237–241 (2020).

Article  CAS  Google Scholar 

Clark, M. A. et al. Design, synthesis and selection of DNA-encoded small-molecule libraries. Nat. Chem. Biol. 5, 647–654 (2009).

Article  CAS  Google Scholar 

Pilania, G., Gubernatis, J. E. & Lookman, T. Multi-fidelity machine learning models for accurate bandgap predictions of solids. Comput. Mater. Sci. 129, 156–163 (2017).

Article  CAS  Google Scholar 

Pilania, G. et al. Machine learning bandgaps of double perovskites. Sci. Rep. 6, 19375 (2016).

Article  CAS  Google Scholar 

Lu, S. et al. Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning. Nat. Commun. 9, 3405 (2018).

Article  Google Scholar 

Askerka, M. et al. Learning-in-templates enables accelerated discovery and synthesis of new stable double perovskites. J. Am. Chem. Soc. 141, 3682–3690 (2019).

Article  CAS  Google Scholar 

Jain, A. & Bligaard, T. Atomic-position independent descriptor for machine learning of material properties. Phys. Rev. B 98, 214112 (2018).

Article  Google Scholar 

Choubisa, H. et al. Crystal site feature embedding enables exploration of large chemical spaces. Matter 3, 433–448 (2020).

Article  Google Scholar 

Xie, T. & Grossman, J. C. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett. 120, 145301–145306 (2018).

Article  CAS  Google Scholar 

Broberg, D. et al. PyCDT: a Python toolkit for modeling point defects in semiconductors and insulators. Comput. Phys. Commun. 226, 165–179 (2018).

Article  CAS  Google Scholar 

Roch, L. M. et al. ChemOS: an orchestration software to democratize autonomous discovery. PLoS ONE 15, 1–18 (2020).

Article  Google Scholar 

Wei, L., Xu, X., Gurudayal, Bullock, J. & Ager, J. W. Machine learning optimization of p-type transparent conducting films. Chem. Mater. 31, 7340–7350 (2019).

Article  CAS  Google Scholar 

Schubert, M. F. et al. Design of multilayer antireflection coatings made from co-sputtered and low-refractive-index materials by genetic algorithm. Opt. Express 16, 5290–5298 (2008).

Article  CAS  Google Scholar 

Wang, C., Yu, S., Chen, W. & Sun, C. Highly efficient light-trapping structure design inspired by natural evolution. Sci. Rep. 3, 1025 (2013).

Article  Google Scholar 

Ripalda, J. M., Buencuerpo, J. & García, I. Solar cell designs by maximizing energy production based on machine learning clustering of spectral variations. Nat. Commun. 9, 5126 (2018).

Article  CAS  Google Scholar 

Demant, M., Virtue, P., Kovvali, A., Yu, S. X. & Rein, S. Learning quality rating of As-Cut mc-Si wafers via convolutional regression networks. IEEE J. Photovolt. 9, 1064–1072 (2019).

Article  Google Scholar 

Musztyfaga-Staszuk, M. & Honysz, R. Application of artificial neural networks in modeling of manufactured front metallization contact resistance for silicon solar cells. Arch. Metall. Mater. 60, 1673–1678 (2015).

Article  CAS  Google Scholar 

Sendek, A. D. et al. Holistic computational structure screening of more than 12000 candidates for solid lithium-ion conductor materials. Energy Environ. Sci. 10, 306–320 (2017).

Article  CAS  Google Scholar 

Ahmad, Z., Xie, T., Maheshwari, C., Grossman, J. C. & Viswanathan, V. Machine learning enabled computational screening of inorganic solid electrolytes for suppression of dendrite formation in lithium metal anodes. ACS Cent. Sci. 4, 996–1006 (2018).

Article  CAS  Google Scholar 

Zhang, Y. et al. Unsupervised discovery of solid-state lithium ion conductors. Nat. Commun. 10, 5260 (2019).

Article  Google Scholar 

Doan, H. A. et al. Quantum chemistry-informed active learning to accelerate the design and discovery of sustainable energy storage materials. Chem. Mater. 32, 6338–6346 (2020).

Article  CAS  Google Scholar 

Chemali, E., Kollmeyer, P. J., Preindl, M. & Emadi, A. State-of-charge estimation of Li-ion batteries using deep neural networks: a machine learning approach. J. Power Sources 400, 242–255 (2018).

Article  CAS  Google Scholar 

Richardson, R. R., Osborne, M. A. & Howey, D. A. Gaussian process regression for forecasting battery state of health. J. Power Sources 357, 209–219 (2017).

Article  CAS  Google Scholar 

Berecibar, M. et al. Online state of health estimation on NMC cells based on predictive analytics. J. Power Sources 320, 239–250 (2016).

Article  CAS  Google Scholar 

Severson, K. A. et al. Data-driven prediction of battery cycle life before capacity degradation. Nat. Energy 4, 383–391 (2019).

Article  Google Scholar 

Attia, P. M. et al. Closed-loop optimization of fast-charging protocols for batteries with machine learning. Nature 578, 397–402 (2020).

Article  CAS  Google Scholar 

Joshi, R. P. et al. Machine learning the voltage of electrode materials in metal-ion batteries. ACS Appl. Mater. Interf. 11, 18494–18503 (2019).

Article  CAS  Google Scholar 

Cubuk, E. D., Sendek, A. D. & Reed, E. J. Screening billions of candidates for solid lithium-ion conductors: a transfer learning approach for small data. J. Chem. Phys. 150, 214701 (2019).

Article  Google Scholar 

Sendek, A. D. et al. Machine learning-assisted discovery of solid Li-ion conducting materials. Chem. Mater. 31, 342–352 (2019).

Article  CAS  Google Scholar 

Kim, S., Jinich, A. & Aspuru-Guzik, A. MultiDK: a multiple descriptor multiple kernel approach for molecular discovery and its application to organic flow battery electrolytes. J. Chem. Inf. Model. 57, 657–668 (2017).

Article  CAS  Google Scholar 

Jinich, A., Sanchez-Lengeling, B., Ren, H., Harman, R. & Aspuru-Guzik, A. A mixed quantum chemistry/machine learning approach for the fast and accurate prediction of biochemical redox potentials and its large-scale application to 315000 redox reactions. ACS Cent. Sci. 5, 1199–1210 (2019).

Article  CAS  Google Scholar 

Sarkar, A. et al. High entropy oxides for reversible energy storage. Nat. Commun. 9, 3400 (2018).

Article  Google Scholar 

Choudhury, S. et al. Stabilizing polymer electrolytes in high-voltage lithium batteries. Nat. Commun. 10, 3091 (2019).

Article  Google Scholar 

Sanchez-Lengeling, B. & Aspuru-Guzik, A. Inverse molecular design using machine learning: generative models for matter engineering. Science 361, 360–365 (2018).

留言 (0)

沒有登入
gif