Antibiotics in the pathogenesis of diabetes and inflammatory diseases of the gastrointestinal tract

Ferretti, P. et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24, 133–145.e5 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Korpela, K. & de Vos, W. M. Early life colonization of the human gut: microbes matter everywhere. Curr. Opin. Microbiol. 44, 70–78 (2018).

Article  PubMed  Google Scholar 

Bokulich, N. et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci. Transl Med. 176, 139–148 (2016). This paper shows the profound effects of caesarean section and antibiotic exposure on how the early-life microbiome develops.

Google Scholar 

Yassour, M. et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci. Transl Med. 8, 343ra81 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Bäckhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703 (2015).

Article  PubMed  Google Scholar 

Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cho, I. et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488, 621–626 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cox, L. M. et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158, 705–721 (2014). This paper shows that transient antibiotic-induced perturbation in early life can lead to late long-term metabolic changes in experimental models of obesity.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ruiz, V. E. et al. A single early-in-life macrolide course has lasting effects on murine microbial network topology and immunity. Nat. Commun. 8, 518 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Macpherson, A. J. & Harris, N. L. Interactions between commensal intestinal bacteria and the immune system. Nat. Rev. Immunol. 4, 478–485 (2004).

Article  CAS  PubMed  Google Scholar 

Honda, K. & Littman, D. R. The microbiota in adaptive immune homeostasis and disease. Nature 535, 75–84 (2016).

Article  CAS  PubMed  Google Scholar 

Hsiao, E. Y. et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155, 1451–1463 (2013). This paper provides direct evidence of linkage of the gut microbiome with neurodevelopment.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blaser, M. J. Who are we? Indigenous microbes and the ecology of human diseases. EMBO Rep. 7, 956–960 (2006). This paper introduces the concept that loss of ancestral commensals is leading to the modern epidemics of chronic diseases.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blaser, M. J. The past and future biology of the human microbiome in an age of extinctions. Cell 172, 1173–1177 (2018).

Article  CAS  PubMed  Google Scholar 

Guo, R., Chen, L.-H., Xing, C. & Liu, T. Pain regulation by gut microbiota: molecular mechanisms and therapeutic potential. Br. J. Anaesth. 123, 637–654 (2019).

Article  CAS  PubMed  Google Scholar 

O’ Mahony, S. M., Dinan, T. G. & Cryan, J. F. The gut microbiota as a key regulator of visceral pain. Pain 158 (Suppl. 1), S19–S28 (2017).

Article  PubMed  Google Scholar 

Ding, W. et al. Gut microbiota influences neuropathic pain through modulating proinflammatory and anti-inflammatory T cells. Anesth. Analg. 132, 1146–1155 (2021).

Article  CAS  PubMed  Google Scholar 

Esquerre, N. et al. Colitis-induced microbial perturbation promotes postinflammatory visceral hypersensitivity. Cell Mol. Gastroenterol. Hepatol. 10, 225–244 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Amaral, F. A. et al. Commensal microbiota is fundamental for the development of inflammatory pain. Proc. Natl Acad. Sci. USA 105, 2193–2197 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

di Biase, A. R. et al. Gut microbiota signatures and clinical manifestations in celiac disease children at onset: a pilot study. J. Gastroenterol. Hepatol. 36, 446–454 (2021).

Article  PubMed  Google Scholar 

van Boeckel, T. P. et al. Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect. Dis. 14, 742–750 (2014).

Article  PubMed  Google Scholar 

Blaser, M. J., Melby, M. K., Lock, M. & Nichter, M. Accounting for variation in and overuse of antibiotics among humans. Bioessays 43, e2000163 (2021). This paper indicates the extensive variation in antibiotic use and the means to rationalize therapeutic approaches.

Article  PubMed  Google Scholar 

Maier, L. et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555, 623–628 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dethlefsen, L. & Relman, D. A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl Acad. Sci. USA 108, 4554–4561 (2011).

Article  CAS  PubMed  Google Scholar 

Korpela, K. et al. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat. Commun. 7, 10410 (2016). This study shows long-term effects of early-life antibiotic exposures.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abeles, S. R. et al. Microbial diversity in individuals and their household contacts following typical antibiotic courses. Microbiome 4, 39 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Ventin-Holmberg, R. et al. The effect of antibiotics on the infant gut fungal microbiota. J. Fungi 8, 328 (2022).

Article  CAS  Google Scholar 

Basmaciyan, L., Bon, F., Paradis, T., Lapaquette, P. & Dalle, F. Candida albicans interactions with the host: crossing the intestinal epithelial barrier. Tissue Barriers 7, 1612661 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Ost, K. S. et al. Adaptive immunity induces mutualism between commensal eukaryotes. Nature 596, 114–118 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dominguez-Bello, M. G., Godoy-Vitorino, F., Knight, R. & Blaser, M. J. Role of the microbiome in human development. Gut 68, 1108–1114 (2019).

Article  CAS  PubMed  Google Scholar 

International Diabetes Federation. IDF Diabetes Atlas 10th edn (IDF, 2021).

Ilonen, J., Lempainen, J. & Veijola, R. The heterogeneous pathogenesis of type 1 diabetes mellitus. Nat. Rev. Endocrinol. 15, 635–650 (2019).

Article  CAS  PubMed  Google Scholar 

Patterson, C. C. et al. Incidence trends for childhood type 1 diabetes in Europe during 1989-2003 and predicted new cases 2005-20: a multicentre prospective registration study. Lancet 373, 2027–2033 (2009).

Article  PubMed  Google Scholar 

Hussen, H. I., Persson, M. & Moradi, T. The trends and the risk of type 1 diabetes over the past 40 years: an analysis by birth cohorts and by parental migration background in Sweden. BMJ Open 3, e003418 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Akerblom, H. K., Vaarala, O., Hyöty, H., Ilonen, J. & Knip, M. Environmental factors in the etiology of type 1 diabetes. Am. J. Med. Genet. 115, 18–29 (2002).

Article  PubMed  Google Scholar 

Giongo, A. et al. Toward defining the autoimmune microbiome for type 1 diabetes. ISME J. 5, 82–91 (2011).

Article  CAS  PubMed  Google Scholar 

de Goffau, M. C. et al. Fecal microbiota composition differs between children with β-cell autoimmunity and those without. Diabetes 62, 1238–1244 (2013).

Article  PubMed  PubMed Central  Google Scholar 

de Groot, P. F. et al. Distinct fecal and oral microbiota composition in human type 1 diabetes, an observational study. PLoS ONE 12, e0188475 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Kostic, A. D. et al. The dynamics of the human infant gut microbiome in development and in progression towards type 1 diabetes. Cell Host Microbe 17, 260–273 (2015). This study links changes in microbiome characteristics with type 1 diabetes risk.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif