Effect of a hexacyclic triterpenic acid from Euscaphis japonica on the oleic acid induced HepG2 cellular model of non-alcoholic fatty liver disease

Sharma M, Mitnala S, Vishnubhotla RK, Mukherjee R, Reddy DN, Rao PN. The riddle of nonalcoholic fatty liver disease: progression from nonalcoholic fatty liver to nonalcoholic steatohepatitis. J Clin Exp Hepatol. 2015;5:147–58. https://doi.org/10.1016/j.jceh.2015.02.002.

Article  PubMed  PubMed Central  Google Scholar 

Cotter TG, Rinella M. Nonalcoholic fatty liver disease 2020: the state of the disease. Gastroenterology. 2020;158:1851–64. https://doi.org/10.1053/j.gastro.2020.01.052.

Article  CAS  PubMed  Google Scholar 

Younossi ZM, Loomba R, Rinella ME, Bugianesi E, Marchesini G, Neuschwander-Tetri BA, et al. Current and future therapeutic regimens for nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology. 2018;68:361–71. https://doi.org/10.1002/hep.29724.

Article  PubMed  Google Scholar 

Day CP, James OF. Steatohepatitis: a tale of two “hits”? Gastroenterology. 1998;114:842–5. https://doi.org/10.1016/s0016-5085(98)70599-2.

Article  CAS  PubMed  Google Scholar 

Kawano Y, Cohen DE. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J Gastroenterol. 2013;48:434–41. https://doi.org/10.1007/s00535-013-0758-5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang PX, Ji YX, Zhang XJ, Zhao LP, Yan ZZ, Zhang P, et al. Targeting CASP8 and FADD-like apoptosis regulator ameliorates nonalcoholic steatohepatitis in mice and nonhuman primates. Nat Med. 2017;23:439–49. https://doi.org/10.1038/nm.4290.

Article  CAS  PubMed  Google Scholar 

Liu Y, Yu Q, Chen Y. Effect of silibinin on CFLAR-JNK pathway in oleic acid-treated HepG2 cells. Biomed Pharmacother. 2018;108:716–23. https://doi.org/10.1016/j.biopha.2018.09.089.

Article  CAS  PubMed  Google Scholar 

Ge YZ. Resources and utilization of EuscaphisJ japonica. Chin Wild Plant Resour. 2004;23:24–5.

Google Scholar 

Kim KH, Choi SH, Lee TS, Oh WK, Kim DS, Kim JB. Selective LXRalpha inhibitory effects observed in plant extracts of MEH184 (Parthenocissua tricuspidata) and MEH185 (Euscaphis japonica). Biochem Biophys Res Commun. 2006;349:513–8. https://doi.org/10.1016/j.bbrc.2006.08.092.

Article  CAS  PubMed  Google Scholar 

Lee MK, Jeon HY, Lee KY, Kim SH, Ma CJ, Sung SH, et al. Inhibitory constituents of Euscaphis japonica on lipopolysaccharide-induced nitric oxide production in BV2 microglia. Planta Med. 2007;73:782–6. https://doi.org/10.1055/s-2007-981551.

Article  CAS  PubMed  Google Scholar 

Lee MK, Lee KY, Jeon HY, Sung SH, Kim YC. Antifibrotic activity of triterpenoids from the aerial parts of Euscaphis japonica on hepatic stellate cells. J Enzym Inhib Med Chem. 2009;24:1276–9. https://doi.org/10.3109/14756360902829709.

Article  CAS  Google Scholar 

Li YC, Tian K, Sun LJ, Long H, Li LJ, Wu ZZ. A new hexacyclic triterpene acid from the roots of Euscaphis japonica and its inhibitory activity on triglyceride accumulation. Fitoterapia. 2016;109:261–5. https://doi.org/10.1016/j.fitote.2016.01.016.

Article  CAS  PubMed  Google Scholar 

Li S, Liao X, Meng F, Wang Y, Sun Z, Guo F, et al. Therapeutic role of ursolic acid on ameliorating hepatic steatosis and improving metabolic disorders in high-fat diet-induced non-alcoholic fatty liver disease rats. PLoS ONE. 2014;9:e86724. https://doi.org/10.1371/journal.pone.0086724.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin YN, Chang HY, Wang CCN, Chu FY, Shen HY, Chen CJ, et al. Oleanolic acid inhibits liver x receptor alpha and pregnane x receptor to attenuate ligand-induced lipogenesis. J Agric Food Chem. 2018;66:10964–76. https://doi.org/10.1021/acs.jafc.8b03372.

Article  CAS  PubMed  Google Scholar 

Toppo E, Sylvester Darvin S, Esakkimuthu S, Buvanesvaragurunathan K, Ajeesh Krishna TP, Antony Caesar S, et al. Curative effect of arjunolic acid from Terminalia arjuna in non-alcoholic fatty liver disease models. Biomed Pharmacother. 2018;107:979–88. https://doi.org/10.1016/j.biopha.2018.08.019.

Article  CAS  PubMed  Google Scholar 

Liou CJ, Dai YW, Wang CL, Fang LW, Huang WC. Maslinic acid protects against obesity-induced nonalcoholic fatty liver disease in mice through regulation of the Sirt1/AMPK signaling pathway. FASEB J. 2019;33:11791–803. https://doi.org/10.1096/fj.201900413RRR.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mu Q, Wang H, Tong L, Fang Q, Xiang M, Han L, et al. Betulinic acid improves nonalcoholic fatty liver disease through YY1/FAS signaling pathway. FASEB J. 2020;34:13033–48. https://doi.org/10.1096/fj.202000546R.

Article  CAS  PubMed  Google Scholar 

Napoli C, Ignarro LJ. Nitric oxide and pathogenic mechanisms involved in the development of vascular diseases. Arch Pharm Res. 2009;32:1103–8. https://doi.org/10.1007/s12272-009-1801-1.

Article  CAS  PubMed  Google Scholar 

Triquell MF, Diaz-Lujan C, Romanini MC, Ramirez JC, Paglini-Oliva P, Schijman AG, et al. Nitric oxide synthase and oxidative-nitrosative stress play a key role in placental infection by Trypanosoma cruzi. Am J Reprod Immunol. 2018;80:e12852. https://doi.org/10.1111/aji.12852.

Article  CAS  PubMed  Google Scholar 

Uysal S, Armutcu F, Aydogan T, Akin K, Ikizek M, Yigitoglu MR. Some inflammatory cytokine levels, iron metabolism and oxidan stress markers in subjects with nonalcoholic steatohepatitis. Clin Biochem. 2011;44:1375–9. https://doi.org/10.1016/j.clinbiochem.2011.09.017.

Article  CAS  PubMed  Google Scholar 

Xu JY, Zhang L, Li ZP, Ji G. Natural products on nonalcoholic fatty liver disease. Curr Drug Targets. 2015;16:1347–55. https://doi.org/10.2174/1389450116666150531155711.

Article  CAS  PubMed  Google Scholar 

Cui W, Chen SL, Hu KQ. Quantification and mechanisms of oleic acid-induced steatosis in HepG2 cells. Am J Transl Res. 2010;2:95–104.

CAS  PubMed  PubMed Central  Google Scholar 

Perla FM, Prelati M, Lavorato M, Visicchio D, Anania C. The role of lipid and lipoprotein metabolism in non-alcoholic fatty liver disease. Children. 2017;4. https://doi.org/10.3390/children4060046.

Fabbrini E, Magkos F. Hepatic steatosis as a marker of metabolic dysfunction. Nutrients. 2015;7:4995–5019. https://doi.org/10.3390/nu7064995.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bugianesi E, McCullough AJ, Marchesini G. Insulin resistance: a metabolic pathway to chronic liver disease. Hepatology. 2005;42:987–1000. https://doi.org/10.1002/hep.20920.

Article  CAS  PubMed  Google Scholar 

Korenblat KM, Fabbrini E, Mohammed BS, Klein S. Liver, muscle, and adipose tissue insulin action is directly related to intrahepatic triglyceride content in obese subjects. Gastroenterology. 2008;134:1369–75. https://doi.org/10.1053/j.gastro.2008.01.075.

Article  CAS  PubMed  Google Scholar 

Salamone F, Bugianesi E. Nonalcoholic fatty liver disease: the hepatic trigger of the metabolic syndrome. J Hepatol. 2010;53:1146–7. https://doi.org/10.1016/j.jhep.2010.06.013.

Article  PubMed  Google Scholar 

Zhang Y, Hai J, Cao M, Zhang Y, Pei S, Wang J, et al. Silibinin ameliorates steatosis and insulin resistance during non-alcoholic fatty liver disease development partly through targeting IRS-1/PI3K/Akt pathway. Int Immunopharmacol. 2013;17:714–20. https://doi.org/10.1016/j.intimp.2013.08.019.

Article  CAS  PubMed  Google Scholar 

Gao Y, Zhang M, Zhang R, You L, Li T, Liu RH. Whole grain brown rice extrudate ameliorates the symptoms of diabetes by activating the IRS1/PI3K/AKT insulin pathway in db/db mice. J Agric Food Chem. 2019;67:11657–64. https://doi.org/10.1021/acs.jafc.9b04684.

Article  CAS  PubMed  Google Scholar 

Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001;414:799–806. https://doi.org/10.1038/414799a.

Article  CAS  PubMed  Google Scholar 

Finck BN. Targeting metabolism, insulin resistance, and diabetes to treat nonalcoholic steatohepatitis. Diabetes. 2018;67:2485–93. https://doi.org/10.2337/dbi18-0024.

Article  PubMed  PubMed Central  Google Scholar 

Tessari P, Coracina A, Cosma A, Tiengo A. Hepatic lipid metabolism and non-alcoholic fatty liver disease. Nutr Metab Cardiovasc Dis. 2009;19:291–302. https://doi.org/10.1016/j.numecd.2008.12.015.

Article  CAS  PubMed  Google Scholar 

Masarone M, Rosato V, Dallio M, Gravina AG, Aglitti A, Loguercio C, et al. Role of oxidative stress in pathophysiology of nonalcoholic fatty liver disease. Oxid Med Cell Longev. 2018;2018:9547613. https://doi.org/10.1155/2018/9547613.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ntheazarian AR, Kangari P, Salmaninejad A. Roles of oxidative stress in the development and progression of breast cancer. Asian Pac J Cancer Prev. 2014;15:4745–51. https://doi.org/10.7314/apjcp.2014.15.12.4745.

Article  Google Scholar 

Rolo AP, Teodoro JS, Palmeira CM. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radic Biol Med. 2012;52:59–69. https://doi.org/10.1016/j.freeradbiomed.2011.10.003.

Article  CAS  PubMed  Google Scholar 

Chen J, Tian J, Ge H, Liu R, Xiao J. Effects of tetramethylpyrazine from Chinese black vinegar on antioxidant and hypolipidemia activities in HepG2 cells. Food Chem Toxicol. 2017;109:930–40. https://doi.org/10.1016/j.fct.2016.12.017.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif