The potential of chalcone derivatives as human carbonic anhydrase inhibitors in the therapy of glaucoma

Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121:2081–90. https://doi.org/10.1016/j.ophtha.2014.05.013.

Article  PubMed  Google Scholar 

Boland MV, Quigley HA. Risk factors and open-angle glaucoma: classification and application. J Glaucoma. 2007;16:406–18. https://doi.org/10.1097/ijg.0b013e31806540a1.

Article  PubMed  Google Scholar 

Marcus MW, de Vries MM, Junoy Montolio FG, Jansonius NM. Myopia as a risk factor for open-angle glaucoma: a systematic review and meta-analysis. Ophthalmology. 2011;118:1989–94.e2. https://doi.org/10.1016/j.ophtha.2011.03.012.

Article  PubMed  Google Scholar 

Ko F, Boland MV, Gupta P, Gadkaree SK, Vitale S, Guallar E, et al. Diabetes, triglyceride levels, and other risk factors for glaucoma in the national health and nutrition examination survey 2005−2008. Invest Ophthalmol Vis Sci. 2016;57:2152–7. https://doi.org/10.1167/iovs.15-18373.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014;311:1901–11. https://doi.org/10.1001/jama.2014.3192.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carta F, Supuran CT, Scozzafava A. Novel therapies for glaucoma: a patent review 2007–2011. Expert Opin Ther Pat. 2012;22:79–88. https://doi.org/10.1517/13543776.2012.649006.

Article  CAS  PubMed  Google Scholar 

Scozzafava A, Supuran CT. Glaucoma and the applications of carbonic anhydrase inhibitors. In: Frost S, McKenna R, editors. Carbonic anhydrase: mechanism, regulation, links to disease, and industrial applications. Dordrecht: Springer; 2014. p. 349–59. https://doi.org/10.1007/978-94-007-7359-2_17.

Alterio V, Di Fiore A, D’Ambrosio K, Supuran CT, De Simone G. Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms. Chem Rev. 2012;112:4421–68. https://doi.org/10.1021/cr200176r.

Article  CAS  PubMed  Google Scholar 

Lindskog S. Structure and mechanism of carbonic anhydrase. Pharmcol Ther. 1997;74:1–20. https://doi.org/10.1016/s0163-7258(96)00198-2.

Article  CAS  Google Scholar 

Supuran CT, Scozzafava A. Carbonic anhydrases as targets for medicinal chemistry. Bioorg Med Chem. 2007;15:4336–50. https://doi.org/10.1016/j.bmc.2007.04.020.

Article  CAS  PubMed  Google Scholar 

Supuran CT. Carbonic anhydrase inhibitors. Bioorg Med Chem Lett. 2010;20:3467–74. https://doi.org/10.1016/j.bmcl.2010.05.009.

Article  CAS  PubMed  Google Scholar 

Friedenwald JS. The formation of the intraocular fluid. Am J Ophthalmol. 1949;32:9–27. https://doi.org/10.1016/s0002-9394(14)78354-0.

Article  PubMed  Google Scholar 

Kinsey VE. Comparative chemistry of aqueous humor in posterior and anterior chambers of rabbit eye, its physiologic significance. AMA Arch Ophthalmol. 1953;50:401–17. https://doi.org/10.1001/archopht.1953.00920030409001.

Article  CAS  PubMed  Google Scholar 

Kinsey VE, Barany E. The rate flow of aqueous humor. II. Derivation of rate of flow and its physiologic significance. Am J Ophthalmol. 1949;32:189–202. https://doi.org/10.1016/S0002-9394(14)78372-2.

Article  PubMed  Google Scholar 

Wistrand PJ. Carbonic anhydrase in the anterior uvea of the rabbit. Acta Physiol Scand. 1951;24:145–8. https://doi.org/10.1111/j.1748-1716.1951.tb00833.x.

Article  CAS  PubMed  Google Scholar 

Becker B. The mechanism of the fall in intraocular pressure induced by the carbonic anhydrase inhibitor, diamox. Am J Ophthalmol. 1955;39:177–84. https://doi.org/10.1016/0002-9394(55)90022-2.

Article  CAS  PubMed  Google Scholar 

Kinsey VE, Reddy DV. Turnover of total carbon dioxide in the aqueous humors and the effect thereon of acetazolamide. AMA Arch Ophthalmol. 1959;62:78–83. https://doi.org/10.1001/archopht.1959.04220010082009.

Article  CAS  PubMed  Google Scholar 

Supuran CT. How many carbonic anhydrase inhibition mechanisms exist. J Enzyme Inhib Med Chem. 2016;31:345–60. https://doi.org/10.3109/14756366.2015.1122001.

Article  CAS  PubMed  Google Scholar 

Kumar S, Rulhania S, Jaswal S, Monga V. Recent advances in the medicinal chemistry of carbonic anhydrase inhibitors. Eur J Med Chem. 2021;209:112923 https://doi.org/10.1016/j.ejmech.2020.112923

Article  CAS  PubMed  Google Scholar 

Carta F, Supuran CT, Scozzafava A. Sulfonamides and their isosters as carbonic anhydrase inhibitors. Future Med Chem. 2014;6:1149–65. https://doi.org/10.4155/fmc.14.68.

Article  CAS  PubMed  Google Scholar 

Ghorai S, Pulya S, Ghosh K, Panda P, Ghosh B, Gayen S. Structure-activity relationship of human carbonic anhydrase-II inhibitors: Detailed insight for future development as anti-glaucoma agents. Bioorg Chem. 2020;95:103557 https://doi.org/10.1016/j.bioorg.2019.103557.

Article  CAS  PubMed  Google Scholar 

Karioti A, Carta F, Supuran CT. Phenols and polyphenols as carbonic anhydrase inhibitors. Molecules. 2016;21:1649 https://doi.org/10.3390/molecules21121649.

Article  CAS  PubMed Central  Google Scholar 

Tsai JC. Innovative IOP-independent neuroprotection and neuroregeneration strategies in the pipeline for glaucoma. J Ophthalmol. 2020;2020:9329310 https://doi.org/10.1155/2020/9329310.

Article  PubMed  PubMed Central  Google Scholar 

Boia R, Ruzafa N, Aires ID, Pereiro X, Ambrósio AF, Vecino E, et al. Neuroprotective strategies for retinal ganglion cell degeneration: current status and challenges ahead. Int J Mol Sci. 2020;21:2262 https://doi.org/10.3390/ijms21072262.

Article  CAS  PubMed Central  Google Scholar 

Nowakowska Z. A review of anti-infective and anti-inflammatory chalcones. Eur J Med Chem. 2007;42:125–37. https://doi.org/10.1016/j.ejmech.2006.09.019.

Article  CAS  PubMed  Google Scholar 

Chu HW, Sethy B, Hsieh PW, Horng JT. Identification of potential drug targets of broad-spectrum inhibitors with a Michael acceptor moiety using shotgun proteomics. Viruses. 2021;13:1756 https://doi.org/10.3390/v13091756.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Constantinescu T, Lungu CN. Anticancer activity of natural and synthetic chalcones. Int J Mol Sci. 2021;22:11306 https://doi.org/10.3390/ijms222111306.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Salehi B, Quispe C, Chamkhi I, El Omari N, Balahbib A, Sharifi-Rad J, et al. Pharmacological properties of chalcones: A review of preclinical including molecular mechanisms and clinical evidence. Front Pharmcol. 2021;11:592654 https://doi.org/10.3389/fphar.2020.592654.

Article  CAS  Google Scholar 

Zhuang C, Zhang W, Sheng C, Zhang W, Xing C, Miao Z. Chalcone: a privileged structure in medicinal chemistry. Chem Rev. 2017;117:7762–810. https://doi.org/10.1021/acs.chemrev.7b00020.

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Freitas Silva M, Pruccoli L, Morroni F, Sita G, Seghetti F, Viegas C, et al. The Keap1/Nrf2-ARE pathway as a pharmacological target for chalcones. Molecules. 2018;23:1803 https://doi.org/10.3390/molecules23071803.

Article  CAS  PubMed Central  Google Scholar 

Ur Rashid H, Xu Y, Ahmad N, Muhammad Y, Wang L. Promising anti-inflammatory effects of chalcones via inhibition of cyclooxygenase, prostaglandin E2, inducible NO synthase and nuclear factor κb activities. Bioorg Chem. 2019;87:335–65. https://doi.org/10.1016/j.bioorg.2019.03.033.

Article  CAS  PubMed  Google Scholar 

Adelusi TI, Akinbolaji GR, Yin X, Ayinde KS, Olaoba OT. Neurotrophic, anti-neuroinflammatory, and redox balance mechanisms of chalcones. Eur J Pharmcol. 2021;891:173695 https://doi.org/10.1016/j.ejphar.2020.173695.

Article  CAS  Google Scholar 

Kontogiorgis C, Mantzanidou M, Hadjipavlou-Litina D. Chalcones and their potential role in inflammation. Mini Rev Med Chem. 2008;8:1224–42. https://doi.org/10.2174/138955708786141034.

Article  CAS  PubMed  Google Scholar 

Katsori AM, Hadjipavlou-Litina D. Recent progress in therapeutic applications of chalcones. Expert Opin Ther Pat. 2011;21:1575–96. https://doi.org/10.1517/13543776.2011.596529.

Article  CAS  PubMed  Google Scholar 

Zhou B, Xing C. Diverse molecular targets for chalcones with varied bioactivities. Med Chem. 2015;5:388–404. https://doi.org/10.4172/2161-0444.1000291.

Article  CAS  Google Scholar 

Jasim HA, Nahar L, Jasim MA, Moore SA, Ritchie KJ, Sarker SD. Chalcones: synthetic chemistry follows where nature leads. Biomolecules. 2021;11:1203 https://doi.org/10.3390/biom11081203.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dizdaroglu Y, Albay C, Arslan T, Ece A, Turkoglu EA, Efe A, et al. Design, synthesis and molecular modelling studies of some pyrazole derivatives as carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem. 2020;35:289–97. https://doi.org/10.1080/14756366.2019.1695791.

Article  CAS 

留言 (0)

沒有登入
gif