Identification of Potential Megalin/Cubilin Substrates Using Extensive Proteomics Quantification from Kidney Megalin-Knockdown Mice

Nielsen R, Christensen EI, Birn H. Megalin and cubilin in proximal tubule protein reabsorption: from experimental models to human disease. Kidney Int. 2016;89(1):58–67. https://doi.org/10.1016/j.kint.2015.11.007.

Article  CAS  PubMed  Google Scholar 

Christensen EI, Birn H. Megalin and cubilin: multifunctional endocytic receptors. Nat Rev Mol Cell Biol. 2002;3(4):258–67. https://doi.org/10.1038/nrm778.

Article  CAS  Google Scholar 

Hammad SM, Barth JL, Knaak C, Argraves WS. Megalin acts in concert with cubilin to mediate endocytosis of high density lipoproteins. J Biol Chem. 2000;275(16):12003–8. https://doi.org/10.1074/jbc.275.16.12003.

Article  CAS  PubMed  Google Scholar 

Christensen EI, Moskaug JO, Vorum H, Jacobsen C, Gundersen TE, Nykjaer A, et al. Evidence for an essential role of megalin in transepithelial transport of retinol. J Am Soc Nephrol. 1999;10(4):685–95.

Article  CAS  Google Scholar 

Gonzalez-Villalobos R, Klassen RB, Allen PL, Navar LG, Hammond TG. Megalin binds and internalizes angiotensin II. Am J Physiol Renal Physiol. 2005;288(2):F420–7. https://doi.org/10.1152/ajprenal.00243.2004.

Article  CAS  PubMed  Google Scholar 

Gonzalez-Villalobos R, Klassen RB, Allen PL, Johanson K, Baker CB, Kobori H, et al. Megalin binds and internalizes angiotensin-(1–7). Am J Physiol Renal Physiol. 2006;290(5):F1270–5. https://doi.org/10.1152/ajprenal.00164.2005.

Article  CAS  PubMed  Google Scholar 

Nykjaer A, Dragun D, Walther D, Vorum H, Jacobsen C, Herz J, et al. An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH) vitamin D3. Cell. 1999;96(4):507–15.

Article  CAS  Google Scholar 

Leheste JR, Rolinski B, Vorum H, Hilpert J, Nykjaer A, Jacobsen C, et al. Megalin knockout mice as an animal model of low molecular weight proteinuria. Am J Pathol. 1999;155(4):1361–70. https://doi.org/10.1016/S0002-9440(10)65238-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Orlando RA, Rader K, Authier F, Yamazaki H, Posner BI, Bergeron JJ, et al. Megalin is an endocytic receptor for insulin. J Am Soc Nephrol. 1998;9(10):1759–66.

Article  CAS  Google Scholar 

Gburek J, Birn H, Verroust PJ, Goj B, Jacobsen C, Moestrup SK, et al. Renal uptake of myoglobin is mediated by the endocytic receptors megalin and cubilin. J Am Soc Nephrol. 2002;13:486a-a487.

Article  Google Scholar 

Moestrup SK, Birn H, Fischer PB, Petersen CM, Verroust PJ, Sim RB, et al. Megalin-mediated endocytosis of transcobalamin-vitamin-B12 complexes suggests a role of the receptor in vitamin-B12 homeostasis. Proc Natl Acad Sci U S A. 1996;93(16):8612–7.

Article  CAS  Google Scholar 

Sousa MM, Norden AG, Jacobsen C, Willnow TE, Christensen EI, Thakker RV, et al. Evidence for the role of megalin in renal uptake of transthyretin. J Biol Chem. 2000;275(49):38176–81. https://doi.org/10.1074/jbc.M002886200.

Article  CAS  PubMed  Google Scholar 

Nykjaer A, Fyfe JC, Kozyraki R, Leheste J-R, Jacobsen C, Nielsen MS, et al. Cubilin dysfunction causes abnormal metabolism of the steroid hormone 25(OH) vitamin D. PNAS. 2001;98(24):13895–900. https://doi.org/10.1073/pnas.241516998.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu CP, Hu Y, Lin JC, Fu HL, Lim LY, Yuan ZX. Targeting strategies for drug delivery to the kidney: From renal glomeruli to tubules. Med Res Rev. 2019;39(2):561–78. https://doi.org/10.1002/med.21532.

Article  CAS  PubMed  Google Scholar 

Lameire N. Nephrotoxicity of recent anti-cancer agents. Clin Kidney J. 2014;7(1):11–22. https://doi.org/10.1093/ckj/sft135.

Article  CAS  PubMed  Google Scholar 

Hori Y, Aoki N, Kuwahara S, Hosojima M, Kaseda R, Goto S, et al. Megalin blockade with cilastatin suppresses drug-induced nephrotoxicity. J Am Soc Nephrol. 2017;28(6):1783–91. https://doi.org/10.1681/asn.2016060606.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bryniarski MA, Zhao B, Chaves LD, Mikkelsen JH, Yee BM, Yacoub R, et al. Immunoglobulin G is a novel substrate for the endocytic protein megalin. AAPS J. 2021;23(2):40. https://doi.org/10.1208/s12248-021-00557-1.

Article  CAS  PubMed  Google Scholar 

Leheste J-R, Rolinski B, Vorum H, Hilpert J, Nykjaer A, Jacobsen C, et al. Megalin Knockout mice as an animal model of low molecular weight proteinuria. Am J Pathol. 1999;155(4):1361–70. https://doi.org/10.1016/S0002-9440(10)65238-8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen S, An B, Wang X, Hilchey SP, Li J, Cao J, et al. Surfactant cocktail-aided extraction/precipitation/on-pellet digestion strategy enables efficient and reproducible sample preparation for large-scale quantitative proteomics. Anal Chem. 2018;90(17):10350–9. https://doi.org/10.1021/acs.analchem.8b02172.

Article  CAS  PubMed  Google Scholar 

Tu C, Mammen MJ, Li J, Shen X, Jiang X, Hu Q, et al. Large-scale, ion-current-based proteomics investigation of bronchoalveolar lavage fluid in chronic obstructive pulmonary disease patients. J Proteome Res. 2014;13:627.

Article  CAS  Google Scholar 

Tu C, Fiandalo MV, Pop E, Stocking JJ, Azabdaftari G, Li J, et al. Proteomic analysis of charcoal-stripped fetal bovine serum reveals changes in the insulin-like growth factor signaling pathway. J Proteome Res. 2018;17(9):2963–77. https://doi.org/10.1021/acs.jproteome.8b00135.

Article  CAS  PubMed  Google Scholar 

Tu C, Li J, Young R, Page BJ, Engler F, Halfon MS, et al. Combinatorial peptide ligand library treatment followed by a dual-enzyme, dual-activation approach on a nanoflow liquid chromatography/orbitrap/electron transfer dissociation system for comprehensive analysis of swine plasma proteome. Anal Chem. 2011;83(12):4802–13. https://doi.org/10.1021/ac200376m.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tu C, Bu Y, Vujcic M, Shen S, Li J, Qu M, et al. Ion current-based proteomic profiling for understanding the inhibitory effect of tumor necrosis factor alpha on myogenic differentiation. J Proteome Res. 2016;15(9):3147–57. https://doi.org/10.1021/acs.jproteome.6b00321.

Article  CAS  PubMed  Google Scholar 

Shen X, Shen S, Li J, Hu Q, Nie L, Tu C, et al. An IonStar experimental strategy for MS1 ion current-based quantification using ultrahigh-field orbitrap: reproducible, in-depth, and accurate protein measurement in large cohorts. J Proteome Res. 2017;16(7):2445–56. https://doi.org/10.1021/acs.jproteome.7b00061.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen X, Shen S, Li J, Hu Q, Nie L, Tu C, et al. IonStar enables high-precision, low-missing-data proteomics quantification in large biological cohorts. PNAS. 2018;115(21):E4767–76. https://doi.org/10.1073/pnas.1800541115.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang X, Jin L, Hu C, Shen S, Qian S, Ma M, et al. Ultra-high-resolution IonStar strategy enhancing accuracy and precision of MS1-based proteomics and an extensive comparison with state-of-the-art SWATH-MS in large-cohort quantification. Anal Chem. 2021;93(11):4884–93. https://doi.org/10.1021/acs.analchem.0c05002.

Article  CAS  PubMed  Google Scholar 

Sadygov RG, Maroto FM, Huhmer AF. ChromAlign: a two-step algorithmic procedure for time alignment of three-dimensional LC-MS chromatographic surfaces. Anal Chem. 2006;78(24):8207–17. https://doi.org/10.1021/ac060923y.

Article  CAS  PubMed  Google Scholar 

Krämer A, Green J, Pollard J Jr, Tugendreich S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics. 2013;30(4):523–30. https://doi.org/10.1093/bioinformatics/btt703.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Koral K, Li H, Ganesh N, Birnbaum MJ, Hallows KR, Erkan E. Akt recruits Dab2 to albumin endocytosis in the proximal tubule. Am J Physiol Renal Physiol. 2014;307(12):F1380–9. https://doi.org/10.1152/ajprenal.00454.2014.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nagai J, Christensen EI, Morris SM, Willnow TE, Cooper JA, Nielsen R. Mutually dependent localization of megalin and Dab2 in the renal proximal tubule. American Journal of Physiology-Renal Physiology. 2005;289(3):F569–76. https://doi.org/10.1152/ajprenal.00292.2004.

Article  CAS  PubMed  Google Scholar 

Gburek J, Verroust PJ, Willnow TE, Fyfe JC, Nowacki W, Jacobsen C, et al. Megalin and cubilin are endocytic receptors involved in renal clearance of hemoglobin. J Am Soc Nephrol. 2002;13(2):423–30.

Article  CAS  Google Scholar 

Oyama Y, Takeda T, Hama H, Tanuma A, Iino N, Sato K, et al. Evidence for megalin-mediated proximal tubular uptake of L-FABP, a carrier of potentially nephrotoxic molecules. Lab Invest. 2005;85(4):522–31. https://doi.org/10.1038/labinvest.3700240.

Article  CAS  PubMed  Google Scholar 

Birn H, Vorum H, Verroust PJ, Moestrup SK, Christensen EI. Receptor- associated protein is important for normal processing of megalin in kidney proximal tubules. J Am Soc Nephrol. 2000;11(2):191–202.

Kounnas MZ, Loukinova EB, Stefansson S, Harmony JAK, Brewer BH, Strickland DK, et al. Identification of glycoprotein-330 as an endocytic receptor for apolipoprotein-J/clusterin. J Biol Chem. 1995;270(22):13070–5. https://doi.org/10.1074/jbc.270.22.13070.

Article  CAS  PubMed  Google Scholar 

Godyna S, Liau G, Popa I, Stefansson S, Argraves WS. Identification of the low-density- lipoprotein receptor-related protein (Lrp) as an endocytic receptor for thrombospondin-1. J Cell Biol. 1995;129(5):1403–10. https://doi.org/10.1083/jcb.129.5.1403.

Article  CAS 

留言 (0)

沒有登入
gif