Lead exposure exacerbates adverse effects of HFD on metabolic function via disruption of gut microbiome, leading to compromised barrier function and inflammation

Hu FB (2011) Globalization of diabetes: the role of diet, lifestyle, and genes. Diabetes Care 34:1249–1257. https://doi.org/10.2337/dc11-0442

Article  PubMed  PubMed Central  Google Scholar 

Kopelman PG (2000) Obesity as a medical problem. Nature 404:635–643. https://doi.org/10.1038/35007508

Article  CAS  PubMed  Google Scholar 

Malnick SD, Knobler H (2006) The medical complications of obesity. QJM 99:565–579. https://doi.org/10.1093/qjmed/hcl085

Article  CAS  PubMed  Google Scholar 

Cao X, Han Y, Gu M, Du H, Song M, Zhu X, Ma G, Pan C, Wang W, Zhao E, Goulette T, Yuan B, Zhang G, Xiao H (2020) Foodborne titanium dioxide nanoparticles induce stronger adverse effects in obese mice than non-obese mice: Gut microbiota dysbiosis, colonic inflammation, and proteome alterations. Small 16:e2001858. https://doi.org/10.1002/smll.202001858

Article  CAS  PubMed  Google Scholar 

Ma C, Liu F, Xie P, Zhang K, Yang J, Zhao J, Zhang H (2021) Mechanism of Pb absorption in wheat grains. J Hazard Mater 415:125618. https://doi.org/10.1016/j.jhazmat.2021.125618

Article  CAS  PubMed  Google Scholar 

Njati SY, Maguta MM (2019) Lead-based paints and children’s PVC toys are potential sources of domestic lead poisoning—a review. Environ Pollut 249:1091–1105. https://doi.org/10.1016/j.envpol.2019.03.062

Article  CAS  PubMed  Google Scholar 

Hou S, Zheng N, Tang L, Ji X, Li Y, Hua X (2019) Pollution characteristics, sources, and health risk assessment of human exposure to Cu, Zn, Cd and Pb pollution in urban street dust across China between 2009 and 2018. Environ Int 128:430–437. https://doi.org/10.1016/j.envint.2019.04.046

Article  CAS  PubMed  Google Scholar 

Raehsler SL, Choung RS, Marietta EV, Murray JA (2018) Accumulation of heavy metals in people on a gluten-free diet. Clin Gastroenterol Hepatol 16:244–251. https://doi.org/10.1016/j.cgh.2017.01.034

Article  CAS  PubMed  Google Scholar 

Ahamed M, Siddiqui MK (2007) Low level lead exposure and oxidative stress: current opinions. Clin Chim Acta 383:57–64. https://doi.org/10.1016/j.cca.2007.04.024

Article  CAS  PubMed  Google Scholar 

Xia J, Jin C, Pan Z, Sun L, Fu Z, Jin Y (2018) Chronic exposure to low concentrations of lead induces metabolic disorder and dysbiosis of the gut microbiota in mice. Sci Total Environ 631–632:439–448. https://doi.org/10.1016/j.scitotenv.2018.03.053

Article  CAS  PubMed  Google Scholar 

Long M, Liu Y, Cao Y, Wang N, Dang M, He J (2016) Proanthocyanidins attenuation of chronic lead-induced liver oxidative damage in kunming mice via the Nrf2/ARE pathway. Nutrients. https://doi.org/10.3390/nu8100656

Article  PubMed  PubMed Central  Google Scholar 

Finkelstein Y, Markowitz ME, Rosen JF (1998) Low-level lead-induced neurotoxicity in children: an update on central nervous system effects. Brain Res Brain Res Rev 27:168–176. https://doi.org/10.1016/s0165-0173(98)00011-3

Article  CAS  PubMed  Google Scholar 

Freeman R (1965) Reversible myocarditis due to chronic lead poisoning in childhood. Arch Dis Child 40:389–393. https://doi.org/10.1136/adc.40.212.389

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rees N, Fuller R (2020) The toxic truth: children’s exposure to lead pollution undermines a generation of future potential. UNICEF, New York

Google Scholar 

Breton J, Le Clere K, Daniel C, Sauty M, Nakab L, Chassat T, Dewulf J, Penet S, Carnoy C, Thomas P, Pot B, Nesslany F, Foligne B (2013) Chronic ingestion of cadmium and lead alters the bioavailability of essential and heavy metals, gene expression pathways and genotoxicity in mouse intestine. Arch Toxicol 87:1787–1795. https://doi.org/10.1007/s00204-013-1032-6

Article  CAS  PubMed  Google Scholar 

Breton J, Daniel C, Dewulf J, Pothion S, Froux N, Sauty M, Thomas P, Pot B, Foligne B (2013) Gut microbiota limits heavy metals burden caused by chronic oral exposure. Toxicol Lett 222:132–138. https://doi.org/10.1016/j.toxlet.2013.07.021

Article  CAS  PubMed  Google Scholar 

Yu L, Yu Y, Yin R, Duan H, Qu D, Tian F, Narbad A, Chen W, Zhai Q (2021) Dose-dependent effects of lead induced gut injuries: an in vitro and in vivo study. Chemosphere 266:129130. https://doi.org/10.1016/j.chemosphere.2020.129130

Article  CAS  PubMed  Google Scholar 

Zhao Y, Liu S, Tang Y, You T, Xu H (2021) Lactobacillus rhamnosus GG ameliorated long-term exposure to TiO2 nanoparticles induced microbiota-mediated liver and colon inflammation and fructose-caused metabolic abnormality in metabolism syndrome mice. J Agric Food Chem 69:9788–9799. https://doi.org/10.1021/acs.jafc.1c03301

Article  CAS  PubMed  Google Scholar 

Wang J, Zhao H, Lv K, Zhao W, Zhang N, Yang F, Wen X, Jiang X, Tian J, Liu X, Ho CT, Li S (2021) Pterostilbene ameliorates DSS-induced intestinal epithelial barrier loss in mice via suppression of the NF-κB-mediated MLCK-MLC signaling pathway. J Agric Food Chem 69:3871–3878. https://doi.org/10.1021/acs.jafc.1c00274

Article  CAS  PubMed  Google Scholar 

Metryka E, Chibowska K, Gutowska I, Falkowska A, Kupnicka P, Barczak K, Chlubek D, Baranowska-Bosiacka I (2018) Lead (Pb) exposure enhances expression of factors associated with inflammation. Int J Mol Sci. https://doi.org/10.3390/ijms19061813

Article  PubMed  PubMed Central  Google Scholar 

Karczewski J, Sledzinska E, Baturo A, Jonczyk I, Maleszko A, Samborski P, Begier-Krasinska B, Dobrowolska A (2018) Obesity and inflammation. Eur Cytokine Netw 29:83–94. https://doi.org/10.1684/ecn.2018.0415

Article  CAS  PubMed  Google Scholar 

Beier EE, Inzana JA, Sheu TJ, Shu L, Puzas JE, Mooney RA (2015) Effects of combined exposure to lead and high-fat diet on bone quality in juvenile male mice. Environ Health Perspect 123:935–943. https://doi.org/10.1289/ehp.1408581

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tian F, Zhai Q, Zhao J, Liu X, Wang G, Zhang H, Zhang H, Chen W (2012) Lactobacillus plantarum CCFM8661 alleviates lead toxicity in mice. Biol Trace Elem Res 150:264–271. https://doi.org/10.1007/s12011-012-9462-1

Article  CAS  PubMed  Google Scholar 

Tyrrell JB, Hafida S, Stemmer P, Adhami A, Leff T (2017) Lead (Pb) exposure promotes diabetes in obese rodents. J Trace Elem Med Biol 39:221–226. https://doi.org/10.1016/j.jtemb.2016.10.007

Article  CAS  PubMed  Google Scholar 

Zhu XQ, Zhao LJ, Liu Z, Zhou QB, Zhu YH, Zhao YL, Yang XL (2021) Long-term exposure to titanium dioxide nanoparticles promotes diet-induced obesity through exacerbating intestinal mucus layer damage and microbiota dysbiosis. Nano Res 14:1512–1522. https://doi.org/10.1007/s12274-020-3210-1

Article  CAS  Google Scholar 

Hu T, Song J, Zeng W, Li J, Wang H, Zhang Y, Suo H (2020) Lactobacillus plantarum LP33 attenuates Pb-induced hepatic injury in rats by reducing oxidative stress and inflammation and promoting Pb excretion. Food Chem Toxicol 143:111533. https://doi.org/10.1016/j.fct.2020.111533

Article  CAS  PubMed  Google Scholar 

Piomelli S (2002) Childhood lead poisoning. Pediatr Clin North Am 49:1285–1304. https://doi.org/10.1016/S0031-3955(02)00097-4

Article  PubMed  Google Scholar 

Liu T, Liang X, Lei C, Huang Q, Song W, Fang R, Li C, Li X, Mo H, Sun N, Lv H, Liu Z (2020) High-fat diet affects heavy metal accumulation and toxicity to mice liver and kidney probably via gut microbiota. Front Microbiol 11:1604. https://doi.org/10.3389/fmicb.2020.01604

Article  PubMed  PubMed Central  Google Scholar 

Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, Guiot Y, Derrien M, Muccioli GG, Delzenne NM, de Vos WM, Cani PD (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 110:9066–9071. https://doi.org/10.1073/pnas.1219451110

Article  PubMed  PubMed Central  Google Scholar 

Hu L, Zhao Y, Xu H (2022) Trojan horse in the intestine: a review on the biotoxicity of microplastics combined environmental contaminants. J Hazard Mater 439:129652. https://doi.org/10.1016/j.jhazmat.2022.129652

Article  CAS  PubMed  Google Scholar 

Paone P, Cani PD (2020) Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut 69:2232–2243. https://doi.org/10.1136/gutjnl-2020-322260

Article  CAS  PubMed  Google Scholar 

Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, Geurts L, Naslain D, Neyrinck A, Lambert DM, Muccioli GG, Delzenne NM (2009) Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58:1091–1103. https://doi.org/10.1136/gut.2008.165886

Article  CAS  PubMed  Google Scholar 

Lin L, Zhang J (2017) Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol 18:2. https://doi.org/10.1186/s12865-016-0187-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ding N, Zhang X, Zhang XD, Jing J, Liu SS, Mu YP, Peng LL, Yan YJ, Xiao GM, Bi XY, Chen H, Li FH, Yao B, Zhao AZ (2020) Impairment of spermatogenesis and sperm motility by the high-fat diet-induced dysbiosis of gut microbes. Gut 69:1608–1619. https://doi.org/10.1136/gutjnl-2019-319127

Article  CAS  PubMed 

留言 (0)

沒有登入
gif