Protective effects of GHRH antagonists against hydrogen peroxide-induced lung endothelial barrier disruption

A.V. Schally, J.L. Varga, J.B. Engel, Antagonists of growth-hormone-releasing hormone: an emerging new therapy for cancer. Nat. Clin. Pr. Endocrinol. Metab. 4, 33–43 (2008). https://doi.org/10.1038/ncpendmet0677

Article  CAS  Google Scholar 

N. Barabutis, A.V. Schally, Growth hormone-releasing hormone: extrapituitary effects in physiology and pathology. Cell Cycle 9, 4110–6 (2010). https://doi.org/10.4161/cc.9.20.13787

Article  CAS  PubMed  Google Scholar 

L.A. Frohman, M. Szabo, Ectopic production of growth hormone-releasing factor by carcinoid and pancreatic islet tumors associated with acromegaly. Prog. Clin. Biol. Res 74, 259–71 (1981)

CAS  PubMed  Google Scholar 

J. Rivier, J. Spiess, M. Thorner, W. Vale, Characterization of a growth hormone-releasing factor from a human pancreatic islet tumour. Nature 300, 276–8 (1982). https://doi.org/10.1038/300276a0

Article  CAS  PubMed  Google Scholar 

A. Havt, A.V. Schally, G. Halmos et al. The expression of the pituitary growth hormone-releasing hormone receptor and its splice variants in normal and neoplastic human tissues. Proc. Natl Acad. Sci. USA 102, 17424–9 (2005). https://doi.org/10.1073/pnas.0506844102

Article  CAS  PubMed  PubMed Central  Google Scholar 

J.L. Varga, A.V. Schally, J.E. Horvath et al. Increased activity of antagonists of growth hormone-releasing hormone substituted at positions 8, 9, and 10. Proc. Natl Acad. Sci. USA 101, 1708–13 (2004). https://doi.org/10.1073/pnas.0307288101

Article  CAS  PubMed  PubMed Central  Google Scholar 

A. Klukovits, A.V. Schally, L. Szalontay et al. Novel antagonists of growth hormone-releasing hormone inhibit growth and vascularization of human experimental ovarian cancers. Cancer 118, 670–80 (2012). https://doi.org/10.1002/cncr.26291

Article  CAS  PubMed  Google Scholar 

A. Siejka, N. Barabutis, A.V. Schally, GHRH antagonist inhibits focal adhesion kinase (FAK) and decreases expression of vascular endothelial growth factor (VEGF) in human lung cancer cells in vitro. Peptides 37, 63–8 (2012). https://doi.org/10.1016/j.peptides.2012.07.010

Article  CAS  PubMed  Google Scholar 

A.V. Schally, X. Zhang, R. Cai, J.M. Hare, R. Granata, M. Bartoli, Actions and potential therapeutic applications of growth hormone-releasing hormone agonists. Endocrinology 160, 1600–1612 (2019). https://doi.org/10.1210/en.2019-00111

Article  CAS  PubMed  Google Scholar 

N. Barabutis, A. Siejka, A.V. Schally, N.L. Block, R. Cai, J.L. Varga, Activation of mitogen-activated protein kinases by a splice variant of GHRH receptor. J. Mol. Endocrinol. 44, 127–34 (2010). https://doi.org/10.1677/JME-09-0121

Article  CAS  PubMed  Google Scholar 

A. Siejka, A.V. Schally, N. Barabutis, Activation of Janus kinase/signal transducer and activator of transcription 3 pathway by growth hormone-releasing hormone. Cell Mol. Life Sci. 67, 959–64 (2010). https://doi.org/10.1007/s00018-009-0224-y

Article  CAS  PubMed  Google Scholar 

N. Barabutis, A.V. Schally, A. Siejka, P53, GHRH, inflammation and cancer. EBioMedicine 37, 557–562 (2018). https://doi.org/10.1016/j.ebiom.2018.10.034

Article  PubMed  PubMed Central  Google Scholar 

N. Barabutis, A glimpse at growth hormone-releasing hormone cosmos. Clin. Exp. Pharm. Physiol. 47, 1632–1634 (2020). https://doi.org/10.1111/1440-1681.13324

Article  CAS  Google Scholar 

N. Barabutis, Growth hormone releasing hormone in endothelial barrier function. Trends Endocrinol. Metab. 32, 338–340 (2021). https://doi.org/10.1016/j.tem.2021.03.001

Article  CAS  PubMed  PubMed Central  Google Scholar 

N. Barabutis, Growth hormone releasing hormone in the unfolded protein response context. Endocrine 67, 291–293 (2020). https://doi.org/10.1007/s12020-020-02205-8

Article  CAS  PubMed  Google Scholar 

M. Certo, H. Elkafrawy, V. Pucino, D. Cucchi, K.C.P. Cheung, C. Mauro, Endothelial cell and T-cell crosstalk: targeting metabolism as a therapeutic approach in chronic inflammation. Br. J. Pharm. 178, 2041–2059 (2021). https://doi.org/10.1111/bph.15002

Article  CAS  Google Scholar 

Amersfoort J, Eelen G, Carmeliet P. Immunomodulation by endothelial cells - partnering up with the immune system? Nat Rev Immunol. 2022. https://doi.org/10.1038/s41577-022-00694-4

D. Mehta, A.B. Malik, Signaling mechanisms regulating endothelial permeability. Physiol. Rev. 86, 279–367 (2006). https://doi.org/10.1152/physrev.00012.2005

Article  CAS  PubMed  Google Scholar 

Y. Komarova, A.B. Malik, Regulation of endothelial permeability via paracellular and transcellular transport pathways. Annu Rev. Physiol. 72, 463–93 (2010). https://doi.org/10.1146/annurev-physiol-021909-135833

Article  CAS  PubMed  Google Scholar 

L. Bierhansl, L.C. Conradi, L. Treps, M. Dewerchin, P. Carmeliet, Central role of metabolism in endothelial cell function and vascular disease. Physiol. (Bethesda) 32, 126–140 (2017). https://doi.org/10.1152/physiol.00031.2016

Article  CAS  Google Scholar 

N. Barabutis, Unfolded protein response in the COVID-19 context. Aging Health Res 1, 100001 (2021). https://doi.org/10.1016/j.ahr.2020.100001

Article  PubMed  Google Scholar 

N. Barabutis, A. Verin, J.D. Catravas, Regulation of pulmonary endothelial barrier function by kinases. Am. J. Physiol. Lung Cell Mol. Physiol. 311, L832–L845 (2016). https://doi.org/10.1152/ajplung.00233.2016

Article  PubMed  PubMed Central  Google Scholar 

Negri S, Faris P, Moccia F. Reactive oxygen species and endothelial Ca(2+) signaling: brothers in arms or partners in crime? Int J Mol Sci. 22, (2021). https://doi.org/10.3390/ijms22189821

X. Liang, P. Arullampalam, Z. Yang, X.F. Ming, Hypoxia enhances endothelial intercellular adhesion molecule 1 protein level through upregulation of Arginase Type II and mitochondrial oxidative stress. Front Physiol. 10, 1003 (2019). https://doi.org/10.3389/fphys.2019.01003

Article  PubMed  PubMed Central  Google Scholar 

W.A. Banks, J.E. Morley, S.A. Farr et al. Effects of a growth hormone-releasing hormone antagonist on telomerase activity, oxidative stress, longevity, and aging in mice. Proc. Natl Acad. Sci. USA 107, 22272–7 (2010). https://doi.org/10.1073/pnas.1016369107

Article  PubMed  PubMed Central  Google Scholar 

N. Barabutis, A.V. Schally, Antioxidant activity of growth hormone-releasing hormone antagonists in LNCaP human prostate cancer line. Proc. Natl Acad. Sci. USA 105, 20470–5 (2008). https://doi.org/10.1073/pnas.0811209106

Article  PubMed  PubMed Central  Google Scholar 

M.S. Akhter, N. Barabutis, Suppression of reactive oxygen species in endothelial cells by an antagonist of growth hormone-releasing hormone. J. Biochem Mol. Toxicol. 35, e22879 (2021). https://doi.org/10.1002/jbt.22879

Article  CAS  PubMed  PubMed Central  Google Scholar 

N. Barabutis, M.S. Akhter, M.A. Uddin, K.T. Kubra, A.V. Schally, GHRH antagonists protect against hydrogen peroxide-induced breakdown of brain microvascular endothelium integrity. Horm. Metab. Res 52, 336–339 (2020). https://doi.org/10.1055/a-1149-9347

Article  CAS  PubMed  Google Scholar 

M.V. Suurna, S.L. Ashworth, M. Hosford et al. Cofilin mediates ATP depletion-induced endothelial cell actin alterations. Am. J. Physiol. Ren. Physiol. 290, F1398–407 (2006). https://doi.org/10.1152/ajprenal.00194.2005

Article  CAS  Google Scholar 

N. Barabutis, P53 in lung vascular barrier dysfunction. Vasc. Biol. 2, E1–E2 (2020). https://doi.org/10.1530/vb-20-0004

Article  PubMed  PubMed Central  Google Scholar 

P. Ak, A.J. Levine, p53 and NF-kappaB: different strategies for responding to stress lead to a functional antagonism. FASEB J. 24, 3643–52 (2010). https://doi.org/10.1096/fj.10-160549

Article  CAS  PubMed  Google Scholar 

Liu T, Zhang L, Joo D, Sun SC. NF-kappaB signaling in inflammation. Signal Transduct Target Ther. 2, (2017). https://doi.org/10.1038/sigtrans.2017.23

E.A. Komarova, V. Krivokrysenko, K. Wang et al. p53 is a suppressor of inflammatory response in mice. FASEB J. 19, 1030–2 (2005). https://doi.org/10.1096/fj.04-3213fje

Article  CAS  PubMed  Google Scholar 

S.H. Murphy, K. Suzuki, M. Downes et al. Tumor suppressor protein (p)53, is a regulator of NF-kappaB repression by the glucocorticoid receptor. Proc. Natl Acad. Sci. USA 108, 17117–22 (2011). https://doi.org/10.1073/pnas.1114420108

Article  PubMed  PubMed Central  Google Scholar 

M.A. Uddin, M.S. Akhter, A. Siejka, J.D. Catravas, N. Barabutis, P53 supports endothelial barrier function via APE1/Ref1 suppression. Immunobiology 224, 532–538 (2019). https://doi.org/10.1016/j.imbio.2019.04.008

Article  CAS  PubMed  PubMed Central  Google Scholar 

N. Barabutis, P53 in RhoA regulation. Cytoskeleton (Hoboken) 77, 197–201 (2020). https://doi.org/10.1002/cm.21604

Article  CAS  Google Scholar 

M.S. Akhter, M.A. Uddin, N. Barabutis, P53 regulates the redox status of lung endothelial cells. Inflammation 43, 686–691 (2020). https://doi.org/10.1007/s10753-019-01150-7

Article  CAS  PubMed  Google Scholar 

M.S. Akhter, M.A. Uddin, K.T. Kubra, N. Barabutis, P53-induced reduction of lipid peroxidation supports brain microvascular endothelium integrity. J. Pharm. Sci. 141, 83–85 (2019). https://doi.org/10.1016/j.jphs.2019.09.008

Article  CAS  Google Scholar 

M.A. Uddin, M.S. Akhter, K.T. Kubra, N. Barabutis, P53 deficiency potentiates LPS-Induced acute lung injury in vivo. Curr. Res Physiol. 3, 30–33 (2020).

留言 (0)

沒有登入
gif