Hedgehog interacting protein activates sodium–glucose cotransporter 2 expression and promotes renal tubular epithelial cell senescence in a mouse model of type 1 diabetes

Saran R, Li Y, Robinson B et al (2016) US renal data system 2015 annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis Off J Natl Kidney Foundation 67:Svii, S1-305. https://doi.org/10.1053/j.ajkd.2015.12.014

Article  Google Scholar 

Schnell O, Valensi P, Standl E, Ceriello A (2020) Comparison of mechanisms and transferability of outcomes of SGLT2 inhibition between type 1 and type 2 diabetes. Endocrinol Diabetes Metab 3:e00129. https://doi.org/10.1002/edm2.129

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhattarai M, Salih M, Regmi M et al (2022) Association of sodium-glucose cotransporter 2 inhibitors with cardiovascular outcomes in patients with type 2 diabetes and other risk factors for cardiovascular disease: a meta-analysis. JAMA Netw Open 5:e2142078. https://doi.org/10.1001/jamanetworkopen.2021.42078

Article  PubMed  PubMed Central  Google Scholar 

Vallon V, Thomson SC (2020) The tubular hypothesis of nephron filtration and diabetic kidney disease. Nat Rev Nephrol 16:317–336. https://doi.org/10.1038/s41581-020-0256-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vallon V, Verma S (2021) Effects of SGLT2 inhibitors on kidney and cardiovascular function. Ann Rev Physiol 83:503–528. https://doi.org/10.1146/annurev-physiol-031620-095920

Article  CAS  Google Scholar 

Ovadya Y, Krizhanovsky V (2015) A new twist in kidney fibrosis. Nat Med 21:975–977. https://doi.org/10.1038/nm.3938

Article  CAS  PubMed  Google Scholar 

Huang S, Susztak K (2016) Epithelial plasticity versus EMT in kidney fibrosis. Trends Mol Med 22:4–6. https://doi.org/10.1016/j.molmed.2015.11.009

Article  CAS  PubMed  Google Scholar 

Docherty MH, O'Sullivan ED, Bonventre JV, Ferenbach DA (2019) Cellular Senescence in the Kidney. J Am Soc Nephrol 30:726–736. https://doi.org/10.1681/ASN.2018121251

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wiley CD (2020) Role of senescent renal cells in pathophysiology of diabetic kidney disease. Curr Diabetes Rep 20:33. https://doi.org/10.1007/s11892-020-01314-y

Article  Google Scholar 

Xu J, Zhou L, Liu Y (2020) Cellular senescence in kidney fibrosis: pathologic significance and therapeutic strategies. Front Pharmacol 11:601325. https://doi.org/10.3389/fphar.2020.601325

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bosanac I, Maun HR, Scales SJ et al (2009) The structure of SHH in complex with HHIP reveals a recognition role for the Shh pseudo active site in signaling. Nat Struct Mol Biol 16:691–697. https://doi.org/10.1038/nsmb.1632

Article  CAS  PubMed  Google Scholar 

Chuang PT, McMahon AP (1999) Vertebrate hedgehog signalling modulated by induction of a hedgehog-binding protein. Nature 397:617–621. https://doi.org/10.1038/17611

Article  CAS  PubMed  Google Scholar 

Kwong L, Bijlsma MF, Roelink H (2014) Shh-mediated degradation of Hhip allows cell autonomous and non-cell autonomous Shh signalling. Nat Commun 5:4849. https://doi.org/10.1038/ncomms5849

Article  CAS  PubMed  Google Scholar 

Lao T, Glass K, Qiu W et al (2015) Haploinsufficiency of Hedgehog interacting protein causes increased emphysema induced by cigarette smoke through network rewiring. Genome Med 7:12. https://doi.org/10.1186/s13073-015-0137-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lao T, Jiang Z, Yun J et al (2016) Hhip haploinsufficiency sensitizes mice to age-related emphysema. Proc Natl Acad Sci USA 113:E4681–E4687. https://doi.org/10.1073/pnas.1602342113

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kawahira H, Ma NH, Tzanakakis ES, McMahon AP, Chuang PT, Hebrok M (2003) Combined activities of hedgehog signaling inhibitors regulate pancreas development. Development (Cambridge, England) 130:4871–4879. https://doi.org/10.1242/dev.00653

Article  CAS  Google Scholar 

Kayed H, Kleeff J, Esposito I et al (2005) Localization of the human hedgehog-interacting protein (Hip) in the normal and diseased pancreas. Mol Carcinog 42:183–192. https://doi.org/10.1002/mc.20088

Article  CAS  PubMed  Google Scholar 

Zhou X, Baron RM, Hardin M et al (2012) Identification of a chronic obstructive pulmonary disease genetic determinant that regulates HHIP. Hum Mol Genet 21:1325–1335. https://doi.org/10.1093/hmg/ddr569

Article  CAS  PubMed  Google Scholar 

Olsen CL, Hsu PP, Glienke J, Rubanyi GM, Brooks AR (2004) Hedgehog-interacting protein is highly expressed in endothelial cells but down-regulated during angiogenesis and in several human tumors. BMC Cancer 4:43. https://doi.org/10.1186/1471-2407-4-43

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miyata KN, Zhao XP, Chang SY et al (2020) Increased urinary excretion of hedgehog interacting protein (uHhip) in early diabetic kidney disease. Transl Res J Lab Clin Med 217:1–10. https://doi.org/10.1016/j.trsl.2019.11.001

Article  CAS  Google Scholar 

Zhao XP, Chang SY, Liao MC et al (2018) Hedgehog interacting protein promotes fibrosis and apoptosis in glomerular endothelial cells in murine diabetes. Sci Rep 8:5958. https://doi.org/10.1038/s41598-018-24220-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bouchard M, Souabni A, Busslinger M (2004) Tissue-specific expression of cre recombinase from the Pax8 locus. Genesis (New York, NY : 2000) 38:105–109. https://doi.org/10.1002/gene.20008

Article  CAS  Google Scholar 

Lo CS, Miyata KN, Zhao S et al (2019) Tubular deficiency of heterogeneous nuclear ribonucleoprotein F elevates systolic blood pressure and induces glycosuria in mice. Sci Rep 9:15765. https://doi.org/10.1038/s41598-019-52323-1

Article  CAS  PubMed  PubMed Central  Google Scholar 

Brezniceanu ML, Liu F, Wei CC et al (2007) Catalase overexpression attenuates angiotensinogen expression and apoptosis in diabetic mice. Kidney Int 71:912–923. https://doi.org/10.1038/sj.ki.5002188

Article  CAS  PubMed  Google Scholar 

Lo CS, Shi Y, Chang SY et al (2015) Overexpression of heterogeneous nuclear ribonucleoprotein F stimulates renal Ace-2 gene expression and prevents TGF-beta1-induced kidney injury in a mouse model of diabetes. Diabetologia 58:2443–2454. https://doi.org/10.1007/s00125-015-3700-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miyata KN, Zhao S, Wu CH et al (2020) Comparison of the effects of insulin and SGLT2 inhibitor on the Renal Renin-Angiotensin system in type 1 diabetes mice. Diabetes Res Clin Pract 162:108107. https://doi.org/10.1016/j.diabres.2020.108107

Article  CAS  PubMed  Google Scholar 

Miyata KN, Lo CS, Zhao S et al (2021) Angiotensin II up-regulates sodium-glucose co-transporter 2 expression and SGLT2 inhibitor attenuates Ang II-induced hypertensive renal injury in mice. Clin Sci (London, England : 1979) 135:943–961. https://doi.org/10.1042/CS20210094

Article  CAS  Google Scholar 

Zhao S, Lo CS, Miyata KN et al (2021) Overexpression of Nrf2 in renal proximal tubular cells stimulates sodium-glucose cotransporter 2 expression and exacerbates dysglycemia and kidney injury in diabetic mice. Diabetes 70:1388–1403. https://doi.org/10.2337/db20-1126

Article  CAS  PubMed  Google Scholar 

Liao MC, Zhao XP, Chang SY et al (2017) AT(2) R deficiency mediated podocyte loss via activation of ectopic hedgehog interacting protein (Hhip) gene expression. J Pathol 243:279–293. https://doi.org/10.1002/path.4946

Article  CAS  PubMed  Google Scholar 

Brezniceanu ML, Wei CC, Zhang SL et al (2006) Transforming growth factor-beta 1 stimulates angiotensinogen gene expression in kidney proximal tubular cells. Kidney Int 69:1977–1985. https://doi.org/10.1038/sj.ki.5000396

Article  CAS  PubMed  Google Scholar 

Zhang SL, Chen X, Hsieh TJ et al (2002) Hyperglycemia induces insulin resistance on angiotensinogen gene expression in diabetic rat kidney proximal tubular cells. J Endocrinol 172:333–344. https://doi.org/10.1677/joe.0.1720333

Article  CAS  Google Scholar 

Ghezzi C, Loo DDF, Wright EM (2018) Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2. Diabetologia 61:2087–2097. https://doi.org/10.1007/s00125-018-4656-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smith J, Tho LM, Xu N, Gillespie DA (2010) The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res 108:73–112. https://doi.org/10.1016/B978-0-12-380888-2.00003-0

Article  CAS  PubMed  Google Scholar 

Brouwers B, Pruniau VP, Cauwelier EJ et al (2013) Phlorizin pretreatment reduces acute renal toxicity in a mouse model for diabetic nephropathy. J Biol Chem 288:27200–27207. https://doi.org/10.1074/jbc.M113.469486

Article  CAS  PubMed  PubMed Central  Google Scholar 

Breyer MD, Qi Z, Tchekneva E (2006) Diabetic nephropathy: leveraging mouse genetics. Curr Opin Nephrol Hypertens 15:227–232. https://doi.org/10.1097/01.mnh.0000222687.75055.eb

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif