Disulfiram enhances chemotherapeutic effects of doxorubicin liposomes against human hepatocellular carcinoma via activating ROS-induced cell stress response pathways

Tawari PE, Wang Z, Najlah M, Tsang CW, Kannappan V, Liu P, McConville C, He B, Armesilla AL, Wang W (2015) The cytotoxic mechanisms of disulfiram and copper(ii) in cancer cells. Toxicol Res (Camb) 4(6):1439–1442. https://doi.org/10.1039/c5tx00210a

Article  CAS  Google Scholar 

Yang Z, Guo F, Albers AE, Sehouli J, Kaufmann AM (2019) Disulfiram modulates ROS accumulation and overcomes synergistically cisplatin resistance in breast cancer cell lines. Biomed Pharmacother 113:108727. https://doi.org/10.1016/j.biopha.2019.108727

Article  CAS  PubMed  Google Scholar 

Lu C, Li X, Ren Y, Zhang X (2021) Disulfiram: a novel repurposed drug for cancer therapy. Cancer Chemother Pharmacol 87(2):159–172. https://doi.org/10.1007/s00280-020-04216-8

Article  CAS  PubMed  Google Scholar 

Li Y, Fu SY, Wang LH, Wang FY, Wang NN, Cao Q, Wang YT, Yang JY, Wu CF (2015) Copper improves the anti-angiogenic activity of disulfiram through the EGFR/Src/VEGF pathway in gliomas. Cancer Lett 369(1):86–96. https://doi.org/10.1016/j.canlet.2015.07.029

Article  CAS  PubMed  Google Scholar 

Loo TW, Bartlett MC, Clarke DM (2004) Disulfiram metabolites permanently inactivate the human multidrug resistance P-glycoprotein. Mol Pharm 1(6):426–433. https://doi.org/10.1021/mp049917l

Article  CAS  PubMed  Google Scholar 

Xu Y, Lu L, Luo J, Wang L, Zhang Q, Cao J, Jiao Y (2021) Disulfiram alone functions as a radiosensitizer for pancreatic cancer both in vitro and in vivo. Front Oncol 11:683695. https://doi.org/10.3389/fonc.2021.683695

Article  PubMed  PubMed Central  Google Scholar 

Celik O, Ersahin A, Acet M, Celik N, Baykus Y, Deniz R, Ozerol E, Ozerol I (2016) Disulfiram, as a candidate NF-kappaB and proteasome inhibitor, prevents endometriotic implant growing in a rat model of endometriosis. Eur Rev Med Pharmacol Sci 20(20):4380–4389

CAS  PubMed  Google Scholar 

Skrott Z, Mistrik M, Andersen KK, Friis S, Majera D, Gursky J, Ozdian T, Bartkova J, Turi Z, Moudry P, Kraus M, Michalova M, Vaclavkova J, Dzubak P, Vrobel I, Pouckova P, Sedlacek J, Miklovicova A, Kutt A, Li J, Mattova J, Driessen C, Dou QP, Olsen J, Hajduch M, Cvek B, Deshaies RJ, Bartek J (2017) Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature 552(7684):194–199. https://doi.org/10.1038/nature25016

Article  CAS  PubMed  PubMed Central  Google Scholar 

Skrott Z, Majera D, Gursky J, Buchtova T, Hajduch M, Mistrik M, Bartek J (2019) Disulfiram’s anti-cancer activity reflects targeting NPL4, not inhibition of aldehyde dehydrogenase. Oncogene 38(40):6711–6722. https://doi.org/10.1038/s41388-019-0915-2

Article  CAS  PubMed  Google Scholar 

Terashima Y, Toda E, Itakura M, Otsuji M, Yoshinaga S, Okumura K, Shand FHW, Komohara Y, Takeda M, Kokubo K, Chen MC, Yokoi S, Rokutan H, Kofuku Y, Ohnishi K, Ohira M, Iizasa T, Nakano H, Okabe T, Kojima H, Shimizu A, Kanegasaki S, Zhang MR, Shimada I, Nagase H, Terasawa H, Matsushima K (2020) Targeting FROUNT with disulfiram suppresses macrophage accumulation and its tumor-promoting properties. Nat Commun 11(1):609. https://doi.org/10.1038/s41467-020-14338-5

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qian X, Nie X, Yao W, Klinghammer K, Sudhoff H, Kaufmann AM, Albers AE (2018) Reactive oxygen species in cancer stem cells of head and neck squamous cancer. Semin Cancer Biol 53:248–257. https://doi.org/10.1016/j.semcancer.2018.06.001

Article  CAS  PubMed  Google Scholar 

Sun T, Yang W, Toprani SM, Guo W, He L, DeLeo AB, Ferrone S, Zhang G, Wang E, Lin Z, Hu P, Wang X (2020) Induction of immunogenic cell death in radiation-resistant breast cancer stem cells by repurposing anti-alcoholism drug disulfiram. Cell Commun Signal 18(1):36. https://doi.org/10.1186/s12964-019-0507-3

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mandell JB, Lu F, Fisch M, Beumer JH, Guo J, Watters RJ, Weiss KR (2019) Combination therapy with disulfiram, copper, and doxorubicin for osteosarcoma: in vitro support for a novel drug repurposing strategy. Sarcoma 2019:1–9. https://doi.org/10.1155/2019/1320201

Article  CAS  Google Scholar 

Tao X, Gou J, Zhang Q, Tan X, Ren T, Yao Q, Tian B, Kou L, Zhang L, Tang X (2018) Synergistic breast tumor cell killing achieved by intracellular co-delivery of doxorubicin and disulfiram via core-shell-corona nanoparticles. Biomater Sci 6(7):1869–1881. https://doi.org/10.1039/c8bm00271a

Article  CAS  PubMed  Google Scholar 

Duan X, Xiao J, Yin Q, Zhang Z, Yu H, Mao S, Li Y (2013) Smart pH-sensitive and temporal-controlled polymeric micelles for effective combination therapy of doxorubicin and disulfiram. ACS Nano 7(7):5858–5869. https://doi.org/10.1021/nn4010796

Article  CAS  PubMed  Google Scholar 

Johansson B (1992) A review of the pharmacokinetics and pharmacodynamics of disulfiram and its metabolites. Acta Psychiatr Scand Suppl 369:15–26. https://doi.org/10.1111/j.1600-0447.1992.tb03310.x

Article  CAS  PubMed  Google Scholar 

Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58(3):621–681. https://doi.org/10.1124/pr.58.3.10

Article  CAS  PubMed  Google Scholar 

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

Article  CAS  PubMed  Google Scholar 

Ngoune R, Peters A, von Elverfeldt D, Winkler K, Putz G (2016) Accumulating nanoparticles by EPR: a route of no return. J Control Release 238:58–70. https://doi.org/10.1016/j.jconrel.2016.07.028

Article  CAS  PubMed  Google Scholar 

Sun X, Siri S, Hurst A, Qiu H (2021) Heat shock protein 22 in physiological and pathological hearts: small molecule. Large Potentials Cells 11(1):114. https://doi.org/10.3390/cells11010114

Article  CAS  PubMed  Google Scholar 

Morrow G, Le Pecheur M, Tanguay RM (2016) Drosophila melanogaster mitochondrial Hsp22: a role in resistance to oxidative stress, aging and the mitochondrial unfolding protein response. Biogerontology 17(1):61–70. https://doi.org/10.1007/s10522-015-9591-y

Article  CAS  PubMed  Google Scholar 

Pickup MW, Mouw JK, Weaver VM (2014) The extracellular matrix modulates the hallmarks of cancer. EMBO Rep 15(12):1243–1253. https://doi.org/10.15252/embr.201439246

Article  CAS  PubMed  PubMed Central  Google Scholar 

Riemenschneider MJ, Buschges R, Wolter M, Reifenberger J, Bostrom J, Kraus JA, Schlegel U, Reifenberger G (1999) Amplification and overexpression of the MDM4 (MDMX) gene from 1q32 in a subset of malignant gliomas without TP53 mutation or MDM2 amplification. Cancer Res 59(24):6091–6096

CAS  PubMed  Google Scholar 

Danovi D, Meulmeester E, Pasini D, Migliorini D, Capra M, Frenk R, de Graaf P, Francoz S, Gasparini P, Gobbi A, Helin K, Pelicci PG, Jochemsen AG, Marine JC (2004) Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity. Mol Cell Biol 24(13):5835–5843. https://doi.org/10.1128/MCB.24.13.5835-5843.2004

Article  CAS  PubMed  PubMed Central  Google Scholar 

Perry ME (2010) The regulation of the p53-mediated stress response by MDM2 and MDM4. Cold Spring Harb Perspect Biol 2(1):a000968. https://doi.org/10.1101/cshperspect.a000968

Article  PubMed  PubMed Central  Google Scholar 

Dewaele M, Tabaglio T, Willekens K, Bezzi M, Teo SX, Low DH, Koh CM, Rambow F, Fiers M, Rogiers A, Radaelli E, Al-Haddawi M, Tan SY, Hermans E, Amant F, Yan H, Lakshmanan M, Koumar RC, Lim ST, Derheimer FA, Campbell RM, Bonday Z, Tergaonkar V, Shackleton M, Blattner C, Marine JC, Guccione E (2016) Antisense oligonucleotide-mediated MDM4 exon 6 skipping impairs tumor growth. J Clin Invest 126(1):68–84. https://doi.org/10.1172/jci82534

Article  PubMed  Google Scholar 

Gembarska A, Luciani F, Fedele C, Russell EA, Dewaele M, Villar S, Zwolinska A, Haupt S, de Lange J, Yip D, Goydos J, Haigh JJ, Haupt Y, Larue L, Jochemsen A, Shi H, Moriceau G, Lo RS, Ghanem G, Shackleton M, Bernal F, Marine JC (2012) MDM4 is a key therapeutic target in cutaneous melanoma. Nat Med 18(8):1239–1247. https://doi.org/10.1038/nm.2863

Article  CAS  PubMed  Google Scholar 

Goto K, Arai J, Stephanou A, Kato N (2018) Novel therapeutic features of disulfiram against hepatocellular carcinoma cells with inhibitory effects on a disintegrin and metalloproteinase 10. Oncotarget 9(27):18821–18831. https://doi.org/10.18632/oncotarget.24568

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif