Classification of primary dysmenorrhea by brain effective connectivity of the amygdala: a machine learning study

Allen, H. N., Bobnar, H. J., & Kolber, B. J. (2021). Left and right hemispheric lateralization of the amygdala in pain. Progress in Neurobiology, 196, 101891. https://doi.org/10.1016/j.pneurobio.2020.101891

Article  PubMed  Google Scholar 

Baajour, S. J., Chowdury, A., Thomas, P., Rajan, U., Khatib, D., Zajac-Benitez, C., … & Diwadkar, V. A. (2020). Disordered directional brain network interactions during learning dynamics in schizophrenia revealed by multivariate autoregressive models. Human Brain Mapping, 41(13), 3594–3607. https://doi.org/10.1002/hbm.25032

Boissoneault, J., Sevel, L., Letzen, J., Robinson, M., & Staud, R. (2017). Biomarkers for musculoskeletal pain conditions: Use of brain imaging and machine learning. Current Rheumatology Reports, 19(1), 5. https://doi.org/10.1007/s11926-017-0629-9

Article  PubMed  PubMed Central  Google Scholar 

Burnett, M., & Lemyre, M. (2017). No. 345-primary dysmenorrhea consensus guideline. Journal of obstetrics and gynaecology Canada : JOGC = Journal d'obstetrique et gynecologie du Canada : JOGC, 39(7), 585–595. https://doi.org/10.1016/j.jogc.2016.12.023

Burnett, M. A., Antao, V., Black, A., Feldman, K., Grenville, A., Lea, R., … Robert, M. (2005). Prevalence of Primary Dysmenorrhea in Canada. Journal of Obstetrics and Gynaecology Canada, 27(8), 765–770. https://doi.org/10.1016/S1701-2163(16)30728-9

Chan, W. Y. (1983). Prostaglandins and nonsteroidal antiinflammatory drugs in dysmenorrhea. Annual Review of Pharmacology and Toxicology, 23, 131–149. Retrieved from https://pubmed.ncbi.nlm.nih.gov/6347048

Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 1–27.

Article  Google Scholar 

Coco, A. S. (1999). Primary dysmenorrhea. American Family Physician, 60(2), 489–496.

CAS  PubMed  Google Scholar 

Cottam, W. J., Iwabuchi, S. J., Drabek, M. M., Reckziegel, D., & Auer, D. P. (2018). Altered connectivity of the right anterior insula drives the pain connectome changes in chronic knee osteoarthritis. Pain, 159(5), 929–938. https://doi.org/10.1097/j.pain.0000000000001209

Article  PubMed  PubMed Central  Google Scholar 

Diekhof, E. K., Kaps, L., Falkai, P., & Gruber, O. (2012). The role of the human ventral striatum and the medial orbitofrontal cortex in the representation of reward magnitude – An activation likelihood estimation meta-analysis of neuroimaging studies of passive reward expectancy and outcome processing. Neuropsychologia, 50(7), 1252–1266. https://doi.org/10.1016/j.neuropsychologia.2012.02.007

Article  PubMed  Google Scholar 

du Boisgueheneuc, F., Levy, R., Volle, E., Seassau, M., Duffau, H., Kinkingnehun, S., … Dubois, B. (2006). Functions of the left superior frontal gyrus in humans: a lesion study. Brain, 129(Pt 12), 3315–3328. https://doi.org/10.1093/brain/awl244

Friston, K. J. (2011). Functional and effective connectivity: A review. Brain Connectivity, 1(1), 13–36. https://doi.org/10.1089/brain.2011.0008

Article  PubMed  Google Scholar 

Haxby, J. V. (2012). Multivariate pattern analysis of fMRI: The early beginnings. NeuroImage, 62(2), 852–855. https://doi.org/10.1016/j.neuroimage.2012.03.016

Article  PubMed  Google Scholar 

Holland, P. C., & Gallagher, M. (2004). Amygdala-frontal interactions and reward expectancy. Current Opinion in Neurobiology, 14(2), 148–155. https://doi.org/10.1016/j.conb.2004.03.007

Article  CAS  PubMed  Google Scholar 

Hou, Z., Gong, L., Zhi, M., Yin, Y., Zhang, Y., Xie, C., & Yuan, Y. (2018). Distinctive pretreatment features of bilateral nucleus accumbens networks predict early response to antidepressants in major depressive disorder. Brain Imaging and Behavior, 12(4), 1042–1052. https://doi.org/10.1007/s11682-017-9773-0

Article  PubMed  Google Scholar 

Hu, L., & Iannetti, G. D. (2016). Painful issues in pain prediction. Trends in Neurosciences, 39(4), 212–220. https://doi.org/10.1016/j.tins.2016.01.004

Article  CAS  PubMed  Google Scholar 

Huang, X., Zhang, D., Wang, P., Mao, C., Miao, Z., Liu, C., … Wu, X. (2021). Altered amygdala effective connectivity in migraine without aura: evidence from resting‐state fMRI with Granger causality analysis. The Journal of Headache and Pain, 22(1), 1-8.

Iacovides, S., Avidon, I., & Baker, F. C. (2015). What we know about primary dysmenorrhea today: A critical review. Human Reproduction Update, 21(6), 762–778. https://doi.org/10.1093/humupd/dmv039

Article  CAS  PubMed  Google Scholar 

Jensen, D. V., Andersen, K. B., & Wagner, G. (1987). Prostaglandins in the menstrual cycle of women. A review. Danish Medical Bulletin, 34(3), 178–182.

CAS  PubMed  Google Scholar 

Ji, G., Sun, H., Fu, Y., Li, Z., Pais-Vieira, M., Galhardo, V., & Neugebauer, V. (2010). Cognitive impairment in pain through amygdala-driven prefrontal cortical deactivation. Journal of Neuroscience, 30(15), 5451–5464. https://doi.org/10.1523/jneurosci.0225-10.2010

Article  CAS  PubMed  Google Scholar 

Kawabata, A. (2011). Prostaglandin E2 and pain–an update. Biological &/and Pharmaceutical Bulletin, 34(8), 1170–1173. https://doi.org/10.1248/bpb.34.1170

Article  CAS  Google Scholar 

Kim, E., Kim, D. S., Ahmad, F., & Park, H. (2013). Pattern-based Granger causality mapping in FMRI. Brain Connect, 3(6), 569–577. https://doi.org/10.1089/brain.2013.0148

Article  PubMed  PubMed Central  Google Scholar 

Larroy, C. (2002). Comparing visual-analog and numeric scales for assessing menstrual pain. Behavioral Medicine, 27(4), 179–181.

Article  Google Scholar 

Liu, P., Yang, J., Wang, G., Liu, Y., Liu, X., Jin, L., … Calhoun, V. D. (2016). Altered regional cortical thickness and subcortical volume in women with primary dysmenorrhoea. European Journal of Pain, 20(4), 512–520.

Liu, Q., Zeng, X.-C., Jiang, X.-M., Zhou, Z.-H., & Hu, X.-F. (2019). Altered brain functional hubs and connectivity underlie persistent somatoform pain disorder. Frontiers in Neuroscience, 13, 415. https://doi.org/10.3389/fnins.2019.00415

Article  PubMed  PubMed Central  Google Scholar 

Low, I., Wei, S.-Y., Lee, P.-S., Li, W.-C., Lee, L.-C., Hsieh, J.-C., & Chen, L.-F. (2018). Neuroimaging studies of primary dysmenorrhea. Advances in Experimental Medicine and Biology, 1099, 179–199. https://doi.org/10.1007/978-981-13-1756-9_16

Article  CAS  PubMed  Google Scholar 

Marjoribanks, J., Ayeleke, R. O., Farquhar, C., & Proctor, M. (2015). Nonsteroidal anti-inflammatory drugs for dysmenorrhoea. Cochrane Database Syst Rev, 2015(7), Cd001751. https://doi.org/10.1002/14651858.CD001751.pub3

Article  PubMed Central  Google Scholar 

Neugebauer, V. (2015). Amygdala pain mechanisms. Handbook of Experimental Pharmacology, 227, 261–284. https://doi.org/10.1007/978-3-662-46450-2_13

Article  CAS  PubMed  PubMed Central  Google Scholar 

Neugebauer, V., Li, W., Bird, G. C., & Han, J. S. (2004). The amygdala and persistent pain. The Neuroscientist, 10(3), 221–234. https://doi.org/10.1177/1073858403261077

Article  PubMed  Google Scholar 

Ojala, M., & Garriga, G. C. (2010). Permutation tests for studying classifier performance. Journal of Machine Learning Research, 11(6).

Quan, S., Yang, J., Dun, W., Wang, K., Liu, H., & Liu, J. (2020). Prediction of pain intensity with uterine morphological features and brain microstructural and functional properties in women with primary dysmenorrhea. Brain Imaging Behav, 1–9.

RC, O. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97–113.

Rolls, E. T., Cheng, W., & Feng, J. (2020). The orbitofrontal cortex: reward, emotion and depression. Brain Commun, 2(2), fcaa196. https://doi.org/10.1093/braincomms/fcaa196

Article  PubMed  PubMed Central  Google Scholar 

Schultz, W. (2016). Reward functions of the basal ganglia. Journal of Neural Transmission (vienna), 123(7), 679–693. https://doi.org/10.1007/s00702-016-1510-0

Article  Google Scholar 

Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., … Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci, 27(9), 2349–2356. https://doi.org/10.1523/JNEUROSCI.5587-06.2007

Seth, A. K., Barrett, A. B., & Barnett, L. (2015). Granger causality analysis in neuroscience and neuroimaging. Journal of Neuroscience, 35(8), 3293–3297.

Article  CAS  Google Scholar 

Shen, W., Tu, Y., Gollub, R. L., Ortiz, A., Napadow, V., Yu, S., … Jung, M. (2019a). Visual network alterations in brain functional connectivity in chronic low back pain: A resting state functional connectivity and machine learning study. NeuroImage: Clinical, 22, 101775.

Shen, Z., Yu, S., Wang, M., She, T., Yang, Y., Wang, Y., … Liang, F. (2019b). Abnormal amygdala resting-state functional connectivity in primary dysmenorrhea. Neuroreport, 30(5), 363–368.

Simons, L. E., Moulton, E. A., Linnman, C., Carpino, E., Becerra, L., & Borsook, D. (2014). The human amygdala and pain: Evidence from neuroimaging. Human Brain Mapping, 35(2), 527–538. https://doi.org/10.1002/hbm.22199

Article  PubMed  Google Scholar 

Szczepanski, S. M., Pinsk, M. A., Douglas, M. M., Kastner, S., & Saalmann, Y. B. (2013). Functional and structural architecture of the human dorsal frontoparietal attention network. Proceedings of the National Academy of Sciences, 110(39), 15806–15811. https://doi.org/10.1073/pnas.1313903110

Article  Google Scholar 

Tang, W., Bressler, S. L., Sylvester, C. M., Shulman, G. L., & Corbetta, M. (2012). Measuring Granger causality between cortical regions from voxelwise fMRI BOLD signals with LASSO. PLoS Computational Biology, 8(5), e1002513. https://doi.org/10.1371/journal.pcbi.1002513

Article  CAS  PubMed  PubMed Central  Google Scholar 

Thompson, J. M., & Neugebauer, V. (2017). Amygdala plasticity and pain. Pain Research & Management.

Tu, Y., Ortiz, A., Gollub, R. L., Cao, J., Gerber, J., Lang, C., … Kong, J. (2019). Multivariate resting-state functional connectivity predicts responses to real and sham acupuncture treatment in chronic low back pain. Neuroimaging Clinics, 23, 101885. https://doi.org/10.1016/j.nicl.2019.101885

Tu, Y., Zeng, F., Lan, L., Li, Z., Maleki, N., Liu, B., … Lang, C. (2020). An fMRI-based neural marker for migraine without aura. Neurology, 94(7), e741–e751.

Varfolomeev, S. D., Semenova, N. A., Bykov, V. I., & Tsybenova, S. B. (2019). Kinetics of chemical processes in the human brain: Modeling of the BOLD fMRI signal. Doklady Physical Chemistry, 488(1), 125–128. https://doi.org/10.1134/S0012501619090057

Article  CAS  Google Scholar 

Wager, T. D., Atlas, L. Y., Lindquist, M. A., Roy, M., Woo, C. W., & Kross, E. (2013). An fMRI-based neurologic signature of physical pain. New England Journal of Medicine, 368(15), 1388–1397. https://doi.org/10.1056/NEJMoa1204471

Article  CAS  PubMed  Google Scholar 

Wei, H.-L., Chen, J., Chen, Y.-C., Yu, Y.-S., Guo, X., Zhou, G.-P., … Zhang, H. (2020). Impaired effective functional connectivity of the sensorimotor network in interictal episodic migraineurs without aura. The Journal of Headache and Pain, 21(1), 111. https://doi.org/10.1186/s10194-020-01176-5

Yang, L., Dun, W., Li, K., Yang, J., Wang, K., Liu, H., … Zhang, M. (2019). Altered amygdalar volume and functional connectivity in primary dysmenorrhoea during the menstrual cycle. European Journal of Pain (London, England), 23(5). https://doi.org/10.1002/ejp.1368

Yu, S., Li, W., Shen, W., Edwards, R. R., Gollub, R. L., Wilson, G., … Gerber, J. (2020a). Impaired mesocorticolimbic connectivity underlies increased pain sensitivity in chronic low back pain. Neuroimage, 218, 116969.

Yu, S., Ortiz, A., Gollub, R. L., Wilson, G., Gerber, J., Park, J., … Wasan, A. D. (2020b). Acupuncture treatment modulates the connectivity of key regions of the descending pain modulation and reward systems in patients with chronic low back pain. Journal of Clinical Medicine, 9(6), 1719.

Yu, S., Xie, M., Liu, S., Guo, X., Tian, J., Wei, W., … Yang, J. (2020c). Resting-State Functional Connectivity Patterns Predict Acupuncture Treatment Response in Primary Dysmenorrhea. Frontiers in Neuroscience, 14, 559191. https://doi.org/10.3389/fnins.2020.559191

Zang, Z.-X., Yan, C.-G., Dong, Z.-Y., Huang, J., & Zang, Y.-F. (2012). Granger causality analysis implementation on MATLAB: A graphic user interface toolkit for fMRI data processing. Journal of Neuroscience Methods, 203(2), 418–426.

Article  Google Scholar 

Zhang, Q., Yu, S., Wang, Y., Wang, M., Yang, Y., Wei, W., … Yang, J. (2019). Abnormal reward system network in primary dysmenorrhea. Molecular Pain, 15, 1744806919862096. https://doi.org/10.1177/1744806919862096

Zung, W. W. (1971). A rating instrument for anxiety disorders. Psychosomatics, 12(6), 371–379. https://doi.org/10.1016/S0033-3182(71)71479-0

Article  CAS  PubMed  Google Scholar 

Zung, W. W., Richards, C. B., & Short, M. J. (1965). Self-rating depression scale in an outpatient clinic. Further validation of the SDS. Archives of General Psychiatry, 13(6), 508–515. Retrieved from https://pubmed.ncbi.nlm.nih.gov/4378854

留言 (0)

沒有登入
gif