Basic Science of Autologous Orthobiologics

Becker A.J. Mcculloch E.A. Till J.E.

Cytological Demonstration of the Clonal Nature of Spleen Colonies Derived from Transplanted Mouse Marrow Cells.

Nature. 197: 452-454

The potential of stem cells in orthopaedic surgery.

J Bone Joint Surg. 88: 11Jing B. Yuan H. Yi-Ru W. et al.

Comparison of human amniotic fluid-derived and umbilical cord Wharton’s Jelly-derived mesenchymal stromal cells: Characterization and myocardial differentiation capacity: Comparison of human amniotic fluid-derived and umbilical cord Wharton’s Jelly-derived mesenchymal stromal cells: Characterization and myocardial differentiation capacity.

J Geriatr Cardiol. 9: 166-171Hernigou J. Alves A. Homma Y. et al.

Anatomy of the ilium for bone marrow aspiration: map of sectors and implication for safe trocar placement.

Int Orthop. 38: 2585-2590Everts P. Flanagan II, G. Rothenberg J. et al.

The Rationale of Autologously Prepared Bone Marrow Aspirate Concentrate for use in Regenerative Medicine Applications. In: Regenerative Medicine [Working Title] [Internet]. IntechOpen; 2020.

Bone Marrow Mesenchymal Stem Cells: Historical Overview and Concepts.

Hum Gene Ther. 21: 1045-1056

Mesenchymal stem cells.

J Orthop Res. 9: 641-650Samsonraj R.M. Raghunath M. Nurcombe V. et al.

Concise Review: Multifaceted Characterization of Human Mesenchymal Stem Cells for Use in Regenerative Medicine: Characterization of Human Mesenchymal Stem Cells.

Stem Cells Transl Med. 6: 2173-2185

Multilineage Potential of Adult Human Mesenchymal Stem Cells.

Science. 284: 143-147

A qualitative and quantitative analysis of autologous human multipotent adult stem cells derived from three anatomic areas by marrow aspiration: tibia, anterior ilium, and posterior ilium.

Int J Oral Maxillofac Implants. 28 ()McDaniel J.S. Antebi B. Pilia M. et al.

Quantitative Assessment of Optimal Bone Marrow Site for the Isolation of Porcine Mesenchymal Stem Cells.

Stem Cells Int. 2017: 1-10Gurevitch O. Slavin S. Feldman A.G.

Conversion of red bone marrow into yellow – Cause and mechanisms.

Med Hypotheses. 69: 531-536Bourin P. Bunnell B.A. Casteilla L. et al.

Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT).

Cytotherapy. 15: 641-648Kolf C.M. Cho E. Tuan R.S.

Mesenchymal stromal cells Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation.

Arthritis Res Ther. 9: 204Mautner K. Jerome M.A. Easley K. et al.

Laboratory Quantification of Bone Marrow Concentrate Components in Unilateral Versus Bilateral Posterior Superior Iliac Spine Aspiration.

J Stem Cell Res Ther. 465: 10Hernández-Gil I.F.T. Gracia M.A.A. Jerez B.

Physiological bases of bone regeneration I. Histology and physiology of bone tissue.

Med Oral Patol Oral Cir Bucal. 11: E47-E51

Studies on the organization and regeneration of bone marrow: Origin, growth, and differentiation of endocloned hematopoietic colonies.

Americ J Anatomy. 166: 369-392Hernigou P. Homma Y. Flouzat Lachaniette C.H. et al.

Benefits of small volume and small syringe for bone marrow aspirations of mesenchymal stem cells.

Int Orthop. 37: 2279-2287Lana J.F. da Fonseca L.F. Azzini G. et al.

Bone Marrow Aspirate Matrix: A Convenient Ally in Regenerative Medicine.

Int J Mol Sci. 22: 2762

The relationship between the spleen colony-forming cell and the haemopoietic stem cell.

Blood Cells. 4: 7-25Castillo A.B. Jacobs C.R.

Mesenchymal Stem Cell Mechanobiology.

Curr Osteoporos Rep. 8: 98-104

Weickert M.T., Hecker J., Buck M., et al., The Role of Bone Marrow Mesenchymal Stem Cells in Myelodysplastic Syndrome and Acute Myeloid Leukemia, Scientific Reports, 11 (1), 2021, 5944.

Bone Niches, Hematopoietic Stem Cells, and Vessel Formation.

Int J Mol Sci. 18: 151

The hematopoietic stem cell niche in homeostasis and disease.

Blood. 126: 2443-2451Shi Y. Hu G. Su J. et al.

Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair.

Cell Res. 20: 510-518Avecilla S.T. Hattori K. Heissig B. et al.

Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis.

Nat Med. 10: 64-71Spradling A. Drummond-Barbosa D. Kai T.

Stem cells find their niche.

Nature. 414: 98-104

Stem Cell Niche: Structure and Function.

Annu Rev Cell Dev Biol. 21: 605-631

The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in.

J Exp Med. 208: 421-428Wu P. Tarasenko Y.I. Gu Y. et al.

Region-specific generation of cholinergic neurons from fetal human neural stem cells grafted in adult rat.

Nat Neurosci. 5: 1271-1278Kunisaki Y. Bruns I. Scheiermann C. et al.

Arteriolar niches maintain haematopoietic stem cell quiescence.

Nature. 502: 637-643Friedlis M.F. Centeno C.J.

Performing a Better Bone Marrow Aspiration.

Phys Med Rehabil Clin N Am. 27: 919-939

Everts PA, Ferrell J, Mahoney CB, et al. A Comparative Quantification in Cellularity of Bone Marrow Aspirated with two New Harvesting Devices, and The Non-equivalent Difference Between A Centrifugated Bone Marrow Concentrate And A Bone Marrow Aspirate As Biological Injectates, Using A Bi-Lateral Patient Model. 10(461):10.

Siclari V.A. Zhu J. Akiyama K. et al.

Mesenchymal progenitors residing close to the bone surface are functionally distinct from those in the central bone marrow.

Bone. 53: 575-586Malanga G.A. Buford D. Murrell W.D. et al.

Bone Marrow Aspirate Concentrate Is Equivalent to PRP for the Treatment of Knee OA at 1 Year: Letter to the Editor.

Orthop J Sports Med. 8 ()Hirahara A.M. Panero A. Andersen W.J.

An MRI Analysis of the Pelvis to Determine the Ideal Method for Ultrasound-Guided Bone Marrow Aspiration from the Iliac Crest.

Am J Orthop Belle Mead NJ. 47https://doi.org/10.12788/ajo.2018.0038Batinić D. Marusić M. Pavletić Z. et al.

Relationship between differing volumes of bone marrow aspirates and their cellular composition.

Bone Marrow Transplant. 6: 103-107Haseler L.J. Sibbitt R.R. Sibbitt W.L. et al.

Syringe and Needle Size, Syringe Type, Vacuum Generation, and Needle Control in Aspiration Procedures.

Cardiovasc Intervent Radiol. 34: 590-600Jhun C.S. Stauffer M.A. Reibson J.D. et al.

Determination of Reynolds Shear Stress Level for Hemolysis.

ASAIO J. 64: 63-69Everts P.A. Malanga G.A. Paul R.V. et al.

Assessing clinical implications and perspectives of the pathophysiological effects of erythrocytes and plasma free hemoglobin in autologous biologics for use in musculoskeletal regenerative medicine therapies. A Review.

Regen Ther. 11: 56-64Piuzzi N.S. Hussain Z.B. Chahla J. et al.

Variability in the Preparation, Reporting, and Use of Bone Marrow Aspirate Concentrate in Musculoskeletal Disorders: A Systematic Review of the Clinical Orthopaedic Literature.

J Bone Joint Surg. 100: 517-525

Bone Marrow Aspirate Concentrate Is Equivalent to Platelet-Rich Plasma for the Treatment of Knee Osteoarthritis at 2 Years: A Prospective Randomized Trial.

Am J Sports Med. 50: 12da Silva Meirelles L. Fontes A.M. Covas D.T. et al.

Mechanisms involved in the therapeutic properties of mesenchymal stem cells.

Cytokine Growth Factor Rev. 20: 419-427Cucchiarini M. Venkatesan J.K. Ekici M. et al.

Human mesenchymal stem cells overexpressing therapeutic genes: From basic science to clinical applications for articular cartilage repair.

Biomed Mater Eng. 22: 197-208Bashir J. Sherman A. Lee H. et al.

Mesenchymal Stem Cell Therapies in the Treatment of Musculoskeletal Diseases.

PM&R. 6: 61-69Cassatella M.A. Mosna F. Micheletti A. et al.

Toll-Like Receptor-3-Activated Human Mesenchymal Stromal Cells Significantly Prolong the Survival and Function of Neutrophils.

STEM CELLS. 29: 1001-1011Regmi S. Pathak S. Kim J.O. et al.

Mesenchymal stem cell therapy for the treatment of inflammatory diseases: Challenges, opportunities, and future perspectives.

Eur J Cell Biol. 98: 151041Lee J.W. Fang X. Krasnodembskaya A. et al.

Concise Review: Mesenchymal Stem Cells for Acute Lung Injury: Role of Paracrine Soluble Factors.

Stem Cells. 29: 913-919

VEGF gene therapy: therapeutic angiogenesis in the clinic and beyond.

Gene Ther. 19: 622-629Chen L. Tredget E.E. Wu P.Y.G. et al.

Paracrine Factors of Mesenchymal Stem Cells Recruit Macrophages and Endothelial Lineage Cells and Enhance Wound Healing.

PLoS ONE. 3: e1886Timmers L. Lim S.K. Hoefer I.E. et al.

Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction.

Stem Cell Res. 6: 206-214Morita Y. Ema H. Nakauchi H.

Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment.

J Exp Med. 207: 1173-1182

Mesenchymal stem cells as trophic mediators.

J Cell Biochem. 98: 1076-1084Hernigou P. Daltro G. Hernigou J.

Hip osteonecrosis: stem cells for life or behead and arthroplasty?.

Int Orthop. 42: 1425-1428Tabatabaee R.M. Saberi S. Parvizi J. et al.

Combining Concentrated Autologous Bone Marrow Stem Cells Injection With Core Decompression Improves Outcome for Patients with Early-Stage Osteonecrosis of the Femoral Head: A Comparative Study.

J Arthroplasty. 30: 11—15Awad M.E. Hussein K.A. Helwa I. et al.

Meta-Analysis and Evidence Base for the Efficacy of Autologous Bone Marrow Mesenchymal Stem Cells in Knee Cartilage Repair: Methodological Guidelines and Quality Assessment.

Stem Cells Int. 2019: 1-15Zhao T. Yan W. Xu K. et al.

Combined treatment with platelet-rich plasma and brain-derived neurotrophic factor-overexpressing bone marrow stromal cells supports axonal remyelination in a rat spinal cord hemi-section model.

Cytotherapy. 15: 792-804Betsch M. Schneppendahl J. Thuns S. et al.

Bone Marrow Aspiration Concentrate and Platelet Rich Plasma for Osteochondral Repair in a Porcine Osteochondral Defect Model.

PLoS ONE. 8: e71602Andia I. Martin J.I. Maffulli N.

Platelet-rich Plasma and Mesenchymal Stem Cells: Exciting, But … are we there Yet?.

Sports Med Arthrosc Rev. 26: 59-63Ullah I. Subbarao R.B. Rho G.J.

Human mesenchymal stem cells - current trends and future prospective.

Biosci Rep. 35: e00191Argentati C. Morena F. Bazzucchi M. et al.

Adipose Stem Cell Translational Applications: From Bench-to-Bedside.

Int J Mol Sci. 19: 3475Izadpanah R. Trygg C. Patel B. et al.

Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue.

J Cell Biochem. 99: 1285-1297Dmitrieva R.I. Minullina I.R. Bilibina A.A. et al.

Bone marrow- and subcutaneous adipose tissue-derived mesenchymal stem cells: Differences and similarities.

Cell Cycle. 11: 377-383Mohamed-Ahmed S. Fristad I. Lie S.A. et al.

Adipose-derived and bone marrow mesenchymal stem cells: a donor-matched comparison.

Stem Cell Res Ther. 9: 168Andrzejewska A. Lukomska B. Janowski M.

Concise Review: Mesenchymal Stem Cells: From Roots to Boost: MSCs: From Roots to Boost.

STEM CELLS. 37: 855-864Karastergiou K. Mohamed-Ali V.

The autocrine and paracrine roles of adipokines.

Mol Cell Endocrinol. 318: 69-78

Reversible physiological transdifferentiation in the adipose organ.

Proc Nutr Soc. 68: 340-349Zuk P.A. Zhu M. Ashjian P. et al.

Human Adipose Tissue Is a Source of Multipotent Stem Cells□D.

Mol Biol Cell. 13: 17

The Adipose-derived Stem Cell: Looking Back and Looking Ahead. Kellogg D, editor.

Mol Biol Cell. 21: 1783-1787Yang H.J. Kim K.J. Kim M.K. et al.

The Stem Cell Potential and Multipotency of Human Adipose Tissue-Derived Stem Cells Vary by Cell Donor and Are Different from Those of Other Types of Stem Cells.

Cells Tissues Organs. 199: 373-383Wagner S.J. Leiby D.A. Roback J.D.

Existing and Emerging Blood-Borne Pathogens: Impact on the Safety of Blood Transfusion for the Hematology/Oncology Patient.

Hematol Clin. 33: 739-748

Adipose-derived mesenchymal stromal/stem cells: An update on their phenotype in vivo and in vitro.

World J Stem Cells. 6: 256

Adipose-derived mesenchymal stem cells and platelet-rich plasma synergistically ameliorate the surgical-induced osteoarthritis in Beagle dogs.

J Orthop Surg. 11: 9Brown J.C. Shang H. Li Y. et al.

Isolation of Adipose-Derived Stromal Vascular Fraction Cells Using a Novel Point-of-Care Device: Cell Characterization and Review of the Literature.

Tissue Eng C Methods. 23: 125-135Gimble J.M. Katz A.J. Bunnell B.A.

Adipose-Derived Stem Cells for Regenerative Medicine.

Circ Res. 100: 1249-1260Sugii S. Kida Y. Berggren W.T. et al.

Feeder-dependent and feeder-independent iPS cell derivation from human and mouse adipose stem cells.

Nat Protoc. 6: 346-358Varma M.J.O. Breuls R.G.M. Schouten T.E. et al.

Phenotypical and Functional Characterization of Freshly Isolated Adipose Tissue-Derived Stem Cells.

Stem Cells Dev. 16: 91-104

Alexander R.W., Understanding Mechanical Emulsification (Nanofat) Versus Enzymatic Isolation of Tissue Stromal Vascular Fraction (tSVF) Cells from Adipose Tissue: Potential Uses in Biocellular Regenerative Medicine, J Prolotherapy, 8, 2016, e947-e960.

Tremolada C. Colombo V. Ventura C.

Adipose Tissue and Mesenchymal Stem Cells: State of the Art and Lipogems® Technology Development.

Curr Stem Cell Rep. 2: 304-312Simonacci F. Bertozzi N. Grieco M.P. et al.

From liposuction to adipose-derived stem cells: indications and technique.

Acta Bio Med Atenei Parm. 90: 197-208

Liposuction: a review of principles and techniques.

J Plast Reconstr Amp Aesthet Surg. 64: 985-992

Body contouring by lipolysis: a 5-year experience with over 3000 cases.

Plast Reconstr Surg. 72: 591-597

The Tumescent Technique: Anesthesia and Modified Liposuction Technique.

Dermatol Clin. 8: 425-437

Structural Fat Grafting: More Than a Permanent Filler.

Plast Reconstr Surg. 118: 108S-120SKurita M. Matsumoto D. Shigeura T. et al.

Influences of Centrifugation on Cells and Tissues in Liposuction Aspirates: Optimized Centrifugation for Lipotransfer and Cell Isolation.

Plast Reconstr Surg. 121: 1033-1041Gentile P. Calabrese C. De Angelis B. et al.

Impact of the Different Preparation Methods to Obtain Human Adipose-Derived Stromal Vascular Fraction Cells (AD-SVFs) and Human Adipose-Derived Mesenchymal Stem Cells (AD-MSCs): Enzymatic Digestion Versus Mechanical Centrifugation.

Int J Mol Sci. 20: 5471Tonnard P. Verpaele A. Peeters G. et al.

Nanofat Grafting: Basic Research and Clinical Applications.

Plast Reconstr Surg. 132: 1017-1026Bianchi F. Maioli M. Leonardi E. et al.

A New Nonenzymatic Method and Device to Obtain a Fat Tissue Derivative Highly Enriched in Pericyte-Like Elements by Mild Mechanical Forces from Human Lipoaspirates.

Cell Transpl. 22: 2063-2077

Regulatory Considerations for Human Cells, Tissues, and Cellular and Tissue-Based Products: Minimal Manipulation and Homologous Use; Guidance for.

Industry and Food and Drug Administration Staff. Docket. ()

Adipose-derived stem cells: Fatty potentials for therapy.

Int J Biochem Cell Biol. 45: 1083-1086Hao T. Chen J. Zhi S. et al.

Comparison of bone marrow-vs. adipose tissue-derived mesenchymal stem cells for attenuating liver fibrosis.

Exp Ther Med. 14: 5956-5964Pendleton C. Li Q. Chesler D.A. et al.

Quinones-Hinojosa A. Mesenchymal Stem Cells Derived from Adipose Tissue vs Bone Marrow: In Vitro Comparison of Their Tropism towards Gliomas.

PLoS ONE. 8: e58198Puissant B. Barreau C. Bourin P. et al.

Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells.

Br J Haematol. 129: 118-129Fang Y. Zhang Y. Zhou J. et al.

Adipose-derived mesenchymal stem cell exosomes: a novel pathway for tissues repair.

Cell Tissue Bank. 20: 153-161Salgado A.J. Reis R.L. Sousa N.J. et al.

Adipose Tissue Derived Stem Cells Secretome: Soluble Factors and Their Roles in Regenerative Medicine.

Curr Stem Cell Res Ther. 5: 103-110Naik S. Larsen S.B. Cowley C.J. et al.

Two to Tango: Dialog between Immunity and Stem Cells in Health and Disease.

Cell. 175: 908-920Mitchell R. Mellows B. Sheard J. et al.

Secretome of adipose-derived mesenchymal stem cells promotes skeletal muscle regeneration through synergistic action of extracellular vesicle cargo and soluble proteins.

Stem Cell Res Ther. 10: 116Wang K. Yu L.Y. Jiang L.Y. et al.

The paracrine effects of adipose-derived stem cells on neovascularization and biocompatibility of a macroencapsulation device.

Acta Biomater. 15: 65-76Sorop O. Olver T.D. van de Wouw J. et al.

The microcirculation: a key player in obesity-associated cardiovascular disease.

Cardiovasc Res. 113: 1035-1045Tran K.V. Gealekman O. Frontini A. et al.

The Vascular Endothelium of the Adipose Tissue Gives Rise to Both White and Brown Fat Cells.

Cell Metab. 15: 222-229Planat-Benard V. Silvestre J.S. Cousin B. et al.

Plasticity of Human Adipose Lineage Cells Toward Endothelial Cells: Physiological and Therapeutic Perspectives.

Circulation. 109: 656-663Miranville A. Heeschen C. Sengenès C. et al.

Improvement of Postnatal Neovascularization by Human Adipose Tissue-Derived Stem Cells.

Circulation. 110: 349-355Koh Y.J. Koh B.I. Kim H. et al.

Stromal Vascular Fraction From Adipose Tissue Forms Profound Vascular Network Through the Dynamic Reassembly of Blood Endothelial Cells.

Arterioscler Thromb Vasc Biol. 31: 1141-1150Rehman J. Traktuev D. Li J. et al.

Secretion of Angiogenic and Antiapoptotic Factors by Human Adipose Stromal Cells.

Circulation. 109: 1292-1298Bauer A.L. Jackson T.L. Jiang Y.

Topography of Extracellular Matrix Mediates Vascular Morphogenesis and Migration Speeds in Angiogenesis.

Plos Comput Biol. 5: e1000445Docheva D. Müller S.A. Majewski M. et al.

Biologics for tendon repair.

Adv Drug Deliv Rev. 84: 222-239Narayanan A.S. Page R.C. Swanson J.

Collagen synthesis by human fibroblasts.

Biochem J. 260: 463-469Fraser J.K. Wulur I. Alfonso Z. et al.

Fat tissue: an underappreciated source of stem cells for biotechnology.

Trends Biotechnol. 24: 150-154Oedayrajsingh-Varma M.J. van Ham S.M. Knippenberg M. et al.

Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure.

Cytotherapy. 8: 166-177Iyyanki T. Hubenak J. Liu J. et al.

Harvesting Technique Affects Adipose-Derived Stem Cell Yield.

Aesthet Surg J. 35: 467-476Huang S.J. Fu R.H. Shyu W.C. et al.

Adipose-Derived Stem Cells: Isolation, Characterization, and Differentiation Potential.

Cell Transpl. 22: 701-709De Ugarte D.A. Morizono K. Elbarbary A. et al.

Comparison of Multi-Lineage Cells from Human Adipose Tissue and Bone Marrow.

Cells Tissues Organs. 174: 101-109Klar A.S. Zimoch J. Biedermann T.

Skin Tissue Engineering: Application of Adipose-Derived Stem Cells.

Biomed Res Int. 2017: 1-12Phinney D.G. Kopen G. Righter W. et al.

Donor variation in the growth properties and osteogenic potential of human marrow stromal cells.

J Cell Biochem. 75: 424-436Guneta V. Tan N.S. Chan S.K.J. et al.

Comparative study of adipose-derived stem cells and bone marrow-derived stem cells in similar microenvironmental conditions.

Exp Cell Res. 348: 155-164Woo D.H. Hwang H.S. Shim J.H.

Comparison of adult stem cells derived from multiple stem cell niches.

Biotechnol Lett. 38: 751-759

留言 (0)

沒有登入
gif