Transcriptional noise adjusted for expression levels reveals genes with high transcriptional noise that are highly expressed, functionally related, and co-regulated in yeast

Barrett T et al (2013) NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Res 41(D1):D991–D995

CAS  Article  Google Scholar 

Barroso GV, Puzovic N, Dutheil JY (2018) The evolution of gene-specific transcriptional noise is driven by selection at the pathway level. Genetics 208(1):173–189

CAS  Article  Google Scholar 

Brinster RL, Palmiter RD (1984) Introduction of genes into the germ line of animals. Harvey Lect 80:1–38

CAS  PubMed  PubMed Central  Google Scholar 

Cameroni E et al (2004) The novel yeast pas kinase rim 15 orchestrates G0-associated antioxidant defense mechanisms. Cell Cycle 3(4):462–468

CAS  Article  Google Scholar 

Cerulus B et al (2018) Transition between fermentation and respiration determines history-dependent behavior in fluctuating carbon sources. Elife 7:e39234

Article  Google Scholar 

Cortijo S, Locke JCW (2020) Does gene expression noise play a functional role in plants? Trends Plant Sci 25(10):1041–1051

CAS  Article  Google Scholar 

Diedenhofen B, Musch J (2015) Cocor: a comprehensive solution for the statistical comparison of correlations. PLoS ONE 10(3):e0121945

Article  Google Scholar 

Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: ncbi gene expression and hybridization array data repository. Nucleic Acids Res 30(1):207–210

CAS  Article  Google Scholar 

Gasch AP et al (2017) Single-cell RNA sequencing reveals intrinsic and extrinsic regulatory heterogeneity in yeast responding to stress. PLoS Biol 15(12):e2004050

Article  Google Scholar 

Gentleman RC et al (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80

Article  Google Scholar 

Ham L, Jackson M, Stumpf MP (2021) Pathway dynamics can delineate the sources of transcriptional noise in gene expression. Elife 10:e69324

CAS  Article  Google Scholar 

Hao N, O’Shea EK (2011) Signal-dependent dynamics of transcription factor translocation controls gene expression. Nat Struct Mol Biol 19(1):31–39

Article  Google Scholar 

Hsu IS, Strome B, Plotnikov S, Moses AM (2019) A noisy analog-to-digital converter connects cytosolic calcium bursts to transcription factor nuclear localization pulses in yeast. G3 9(2):561–570

CAS  Article  Google Scholar 

Huber W et al (2015) Orchestrating high-throughput genomic analysis with bioconductor. Nat Methods 12(2):115–121

CAS  Article  Google Scholar 

Imazu H, Sakurai H (2005) Saccharomyces cerevisiae heat shock transcription factor regulates cell wall remodeling in response to heat shock. Eukaryot Cell 4(6):1050–1056

CAS  Article  Google Scholar 

Jariani A et al (2020) A new protocol for single-cell RNA-Seq reveals stochastic gene expression during lag phase in budding yeast. Elife 9:e55320

Article  Google Scholar 

John JA, Draper NR (1980) An alternative family of transformations. Appl Stat 29(2):190

Article  Google Scholar 

Komsta, Lukasz, and Frederick Novomestky. 2022. Moments: moments, cumulants, skewness, kurtosis and related tests. https://CRAN.R-project.org/package=moments

Lal S et al (2018) Heme promotes transcriptional and demethylase activities of Gis1, a member of the histone demethylase JMJD2/KDM4 family. Nucleic Acids Res 46(1):215–228

CAS  Article  Google Scholar 

Loader, Catherine. 2022. Locfit: local regression, likelihood and density estimation. https://CRAN.R-project.org/package=locfit

Middler SL, Gomez S, Parker CD, Palenchar PM (2011) the effects of combinatorial treatments with stress inducing molecules on growth of E. Coli colonies. Curr Microbiol 63(6):588–595

CAS  Article  Google Scholar 

Monteiro PT et al (2020) YEASTRACT+: a portal for cross-species comparative genomics of transcription regulation in yeasts. Nucleic Acids Res 48(D1):D642–D649

CAS  Article  Google Scholar 

Palenchar PM (2022) the influence of codon usage, protein abundance, and protein stability on protein evolution vary by evolutionary distance and the type of protein. Protein J 41(2):216–229

CAS  Article  Google Scholar 

Palenchar PM, Palenchar JB (2012) The evolution of metabolic enzymes in plasmodium and trypanosomatids as compared to saccharomyces and schizosaccharomyces. Mol Biochem Parasitol 184(1):13–19

CAS  Article  Google Scholar 

Paulsson J (2004) Summing up the noise in gene networks. Nature 427(6973):415–418

CAS  Article  Google Scholar 

Pierce JV, Kumamoto CA (2012) Variation in Candida albicans EFG1 expression enables host-dependent changes in colonizing fungal populations. Mbio 3(4):e00117-e1112

CAS  Article  Google Scholar 

R Core Team (2021) A Language and environment for statistical computing. R foundation for statistical computing, Vienna

Google Scholar 

Skrzypek MS et al (2017) the candida genome database (CGD): incorporation of assembly 22, systematic identifiers and visualization of high throughput sequencing data. Nucleic Acids Res 45(D1):D592–D596

CAS  Article  Google Scholar 

Stewart-Ornstein J, Weissman JS, El-Samad H (2012) Cellular noise regulons underlie fluctuations in saccharomyces cerevisiae. Mol Cell 45(4):483–493

CAS  Article  Google Scholar 

Stuecker TN, Scholes AN, Lewis JA (2018) Linkage mapping of yeast cross protection connects gene expression variation to a higher-order organismal trait. PLoS Genet 14(4):e1007335

Article  Google Scholar 

Swain PS, Elowitz MB, Siggia ED (2002) Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc Natl Acad Sci USA 99(20):12795–12800

CAS  Article  Google Scholar 

Tomar P et al (2013) Sporulation genes associated with sporulation efficiency in natural isolates of yeast. PLoS ONE 8(7):e69765

CAS  Article  Google Scholar 

Whittaker J, Whitehead C, Somers M (2005) The neglog transformation and quantile regression for the analysis of a large credit scoring database. J Roy Stat Soc: Ser C 54(5):863–878

Google Scholar 

Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-Seq: accounting for selection bias. Genome Biol 11(2):R14

Article  Google Scholar 

Zheng Xu et al (2018) Hsf1 phosphorylation generates cell-to-cell variation in Hsp90 levels and promotes phenotypic plasticity. Cell Rep 22(12):3099–3106

CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif