New Mechanistic Advances in FcεRI-Mast Cell–Mediated Allergic Signaling

Abbas M, Moussa M, Akel H (2021) Type I hypersensitivity reaction, in StatPearls. 2021, StatPearls Publishing Copyright © 2021, StatPearls Publishing LLC.: Treasure Island (FL)

Komi DE, Mortaz E, Amani S, Tiotiu A, Folkerts G, Adcock IM (2020) The role of mast cells in IgE-independent lung diseases. Clin Rev Allergy Immunol 58(3):377–387. https://doi.org/10.1007/s12016-020-08779-5

Dahlin JS, Maurer M, Metcalfe DD, Pejler G, Sagi‐Eisenberg R, Nilsson G (2022) The ingenious mast cell: contemporary insights into mast cell behavior and function. Allergy 77(1):83–99. https://doi.org/10.1111/all.14881

Elieh Ali Komi D, Wöhrl S, Bielory L (2020) Mast cell biology at molecular level: a comprehensive review. Clin Rev Allergy Immunol 58(3):342–365. https://doi.org/10.1007/s12016-019-08769-2

Miyake K, Shibata S, Yoshikawa S, Karasuyama H (2021) Basophils and their effector molecules in allergic disorders. Allergy 76(6):1693–1706. https://doi.org/10.1111/all.14662

Tanaka S, Furuta K (2021) Roles of IgE and histamine in mast cell maturation. Cells 10(8):2170. https://doi.org/10.3390/cells10082170

Reber LL, Hernandez JD, Galli SJ (2017) The pathophysiology of anaphylaxis. J Allergy Clin Immunol 140(2):335–348. https://doi.org/10.1016/j.jaci.2017.06.003

Spoerl D, Nigolian H, Czarnetzki C, Harr T (2017) Reclassifying anaphylaxis to neuromuscular blocking agents based on the presumed patho-mechanism: IgE-mediated, pharmacological adverse reaction or "innate hypersensitivity"? Int J Mol Sci 18(6):1223. https://doi.org/10.1089/jmf.2016.3853https://doi.org/10.3390/ijms18061223

Cianferoni A (2021) Non-IgE-mediated anaphylaxis. J Allergy Clin Immunol 147(4):1123–1131. https://doi.org/10.1016/j.jaci.2021.02.012

Sutton BJ, Davies AM (2015) Structure and dynamics of IgE-receptor interactions: FcεRI and CD23/FcεRII. Immunol Rev 268(1):222–35. https://doi.org/10.1111/imr.12340

Kraft S, Kinet JP (2007) New developments in FcepsilonRI regulation, function and inhibition. Nat Rev Immunol 7(5):365–78. https://doi.org/10.1038/nri2072

Renz H, Allen KJ, Sicherer SH, Sampson HA, Lack G, Beyer K, Oettgen HC (2018) Food allergy. Nat Rev Dis Primers 4:17098. https://doi.org/10.1038/nrdp.2017.98

Tejedor Alonso MA, Moro Moro MM, Múgica García MV (2015) Epidemiology of anaphylaxis. Clin Exp Allergy 45(6):1027–39. https://doi.org/10.1111/cea.12418

Loh W, Tang MLK (2018) The epidemiology of food allergy in the global context. Int J Environ Res Public Health 15(9):2043. https://doi.org/10.3390/ijerph15092043

Lei DK, Grammer LC (2019) An overview of allergens. Allergy Asthma Proc 40(6):362–365. https://doi.org/10.2500/aap.2019.40.4247

Cheng L, Chen J, Fu Q et al (2018) Chinese society of allergy guidelines for diagnosis and treatment of allergic rhinitis. Allergy Asthma Immunol Res 10(4):300–353. https://doi.org/10.4168/aair.2018.10.4.300

Beatty AL, Peyser ND, Butcher XE, Cocohoba JM, Lin F, Olgin JE, Pletcher MJ, Marcus GM (2021) Analysis of COVID-19 vaccine type and adverse effects following vaccination. JAMA Netw Open 4(12):e2140364. https://doi.org/10.1001/jamanetworkopen.2021.40364

Cabanillas B (2020) Gluten-related disorders: celiac disease, wheat allergy, and nonceliac gluten sensitivity. Crit Rev Food Sci Nutr 60(15):2606–2621. https://doi.org/10.1080/10408398.2019.1651689

Thouvenot B, Roitel O, Tomasina et al (2020) Transcriptional frameshifts contribute to protein allergenicity. J Clin Invest 130(10):5477–5492. https://doi.org/10.1172/jci126275

Zhang Z, Li, Lin Z (2021) Reducing the allergenicity of shrimp tropomyosin and allergy desensitization based on glycation modification. J Agric Food Chem 69(49):14742–14750. https://doi.org/10.1021/acs.jafc.1c03953

Liu J, Chen WM, Shao YH, Zhang JL, Tu ZC (2020) The mechanism of the reduction in allergenic reactivity of bovine α-lactalbumin induced by glycation, phosphorylation and acetylation. Food Chem 310: 125853. https://doi.org/10.1016/j.foodchem.2019.125853

Sicherer SH, Warren CM, Dant C, Gupta RS, Nadeau KC (2020) Food allergy from infancy through adulthood. J Allergy Clin Immunol Pract 8(6):1854–1864. https://doi.org/10.1016/j.jaip.2020.02.010

Tedner SG, Asarnoj A, Thulin H, Westman M (2021) Food allergy and hypersensitivity reactions in children and adults-a review. J Intern Med 291(3):283–302. https://doi.org/10.1111/joim.13422

Henmar H, Nedergaard Larsen J, Lund L, Hvalsøe Meno K, Ferreras M (2022) Comparison of intact allergen extracts and allergoids for subcutaneous immunotherapy - the effect of chemical modification differs both between species and between individual allergen molecules. J Investig Allergol Clin Immunol: 0.https://doi.org/10.18176/jiaci.0783

Brough HA, Nadeau KC (2020) Epicutaneous sensitization in the development of food allergy: what is the evidence and how can this be prevented? Allergy 75(9):2185–2205. https://doi.org/10.1111/all.14304

Brough HA, Simpson A, Makinson K et al (2014) Peanut allergy: effect of environmental peanut exposure in children with filaggrin loss-of-function mutations. J Allergy Clin Immunol 134(4):867–875.e1. https://doi.org/10.1016/j.jaci.2014.08.011

Redhu D, Franke K, Kumari V, Francuzik W (2020) Thymic stromal lymphopoietin production induced by skin irritation results from concomitant activation of protease-activated receptor 2 and interleukin 1 pathways. Br J Dermatol 182(1):119–129. https://doi.org/10.1111/bjd.17940

Berin MC, Agashe C, Burks AW et al (2022) Allergen-specific T cells and clinical features of food allergy: lessons from CoFAR immunotherapy cohorts. J Allergy Clin Immunol 149(4):1373–1382.e12. https://doi.org/10.1016/j.jaci.2021.09.029

Nguyen SMT, Rupprecht CP, Haque A, Pattanaik D, Yusin J, Krishnaswamy G (2021) Mechanisms governing anaphylaxis: inflammatory cells, mediators, endothelial gap junctions and beyond. Int J Mol Sci 22(15):7785. https://doi.org/10.3390/ijms22157785

Chen W, Sivaprasad U, Gibson AM et al (2013) IL-13 receptor α2 contributes to development of experimental allergic asthma. J Allergy Clin Immunol 132(4):951–8.e1–6. https://doi.org/10.1016/j.jaci.2013.04.016

Russkamp D, Aguilar-Pimentel A, Alessandrini F et al (2019) IL-4 receptor α blockade prevents sensitization and alters acute and long-lasting effects of allergen-specific immunotherapy of murine allergic asthma. Allergy 74(8):1549–1560. https://doi.org/10.1111/all.13759

Crotty S (2019) T follicular helper cell biology: a decade of discovery and diseases. Immunity 50(5):1132–1148. https://doi.org/10.1016/j.immuni.2019.04.011

Gowthaman U, Chen JS (2019) Identification of a T follicular helper cell subset that drives anaphylactic IgE. Science 365:(6456). https://doi.org/10.1126/science.aaw6433

Suprun M, Sicherer SH, Wood RA et al (2020) Early epitope-specific IgE antibodies are predictive of childhood peanut allergy. J Allergy Clin Immunol 146(5):1080–1088. https://doi.org/10.1016/j.jaci.2020.08.005

Leyva-Castillo JM, Galand C, Kam C et al (2019) Mechanical skin injury promotes food anaphylaxis by driving intestinal mast cell expansion. Immunity 50(5):1262–1275.e4. https://doi.org/10.1016/j.immuni.2019.03.023

Kawasaki A, Ito N, Murai H, Yasutomi M, Naiki H, Ohshima Y (2018) Skin inflammation exacerbates food allergy symptoms in epicutaneously sensitized mice. Allergy 73(6):1313–1321. https://doi.org/10.1111/all.13404

Kulis MD, Smeekens JM, Immormino RM, Moran TP (2021) The airway as a route of sensitization to peanut: an update to the dual allergen exposure hypothesis. J Allergy Clin Immunol 148(3):689–693. https://doi.org/10.1016/j.jaci.2021.05.035

Datema MR, Eller E, Zwinderman AH, Poulsen LK, Versteeg SA, van Ree R, Bindslev-Jensen C (2019) Ratios of specific IgG(4) over IgE antibodies do not improve prediction of peanut allergy nor of its severity compared to specific IgE alone. Clin Exp Allergy 49(2):216–226. https://doi.org/10.1111/cea.13286

Yanagida N, Sato S, Takahashi K, Nagakura KI, Asaumi T (2018) Increasing specific immunoglobulin E levels correlate with the risk of anaphylaxis during an oral food challenge. Pediatr Allergy Immunol 29(4):417–424. https://doi.org/10.1016/j.ejphar.2018.03.035https://doi.org/10.1111/pai.12896

Asrat S, Kaur N (2020) Chronic allergen exposure drives accumulation of long-lived IgE plasma cells in the bone marrow, giving rise to serological memory. Sci Immunol 5(43):eaav8402. https://doi.org/10.4103/aca.ACA_100_19https://doi.org/10.1126/sciimmunol.aav8402

Jiménez-Saiz R, Chu DK, Mandur TS et al (2017) Lifelong memory responses perpetuate humoral T(H)2 immunity and anaphylaxis in food allergy. J Allergy Clin Immunol 140(6):1604–1615.e5. https://doi.org/10.1016/j.jaci.2017.01.018

Shamji MH, Valenta R (2021) The role of allergen-specific IgE, IgG and IgA in allergic disease. Allergy 76(12):3627–3641. https://doi.org/10.1111/all.14908

Sackesen C, Erman C (2020) IgE and IgG4 binding to lentil epitopes in children with red and green lentil allergy. Pediatr Allergy Immunol 31(2):158–166. https://doi.org/10.1111/pai.13136

Kanchan K, Grinek S, Bahnson HT et al (2022) HLA alleles and sustained peanut consumption promote IgG4 responses in subjects protected from peanut allergy. J Clin Invest 132(1):e152070. https://doi.org/10.1172/jci152070

Nagata Y, Suzuki R (2022) FcεRI: a master regulator of mast cell functions. Cells 11(4):622. https://doi.org/10.3390/cells11040622

Gasser P, Tarchevskaya SS, Guntern P (2020) The mechanistic and functional profile of the therapeutic anti-IgE antibody ligelizumab differs from omalizumab. Nat Commun 11(1):165. https://doi.org/10.1038/s41467-019-13815-w

Fiebiger E, Tortorella D, Jouvin MH, Kinet JP, Ploegh HL (2005) Cotranslational endoplasmic reticulum assembly of FcepsilonRI controls the formation of functional IgE-binding receptors. J Exp Med 201(2):267–77. https://doi.org/10.1084/jem.20041384

Guo Y, Proaño-Pérez E, Muñoz-Cano R (2021) Anaphylaxis: focus on transcription factor activity. Int J Mol Sci 22(9):4935. https://doi.org/10.1080/13880209.2021.1928242https://doi.org/10.3390/ijms22094935

Arthur GK, Cruse G (2022) Regulation of trafficking and signaling of the high affinity IgE receptor by FcεRIβ and the potential impact of FcεRIβ splicing in allergic inflammation. Int J Mol Sci 23(2):788. https://doi.org/10.3390/ijms23020788

Cruse G, Yin Y, Fukuyama T, Desai A, Arthur GK, Bäumer W, Beaven MA, Metcalfe DD (2016) Exon skipping of FcεRIβ eliminates expression of the high-affinity IgE receptor in mast cells with therapeutic potential for allergy. Proc Natl Acad Sci USA 113(49):14115–14120. https://doi.org/10.1073/pnas.1608520113

Arthur GK, Ehrhardt-Humbert LC, Snider DB, Jania C, Tilley SL, Metcalfe DD, Cruse G (2020) The FcεRIβ homologue, MS4A4A, promotes FcεRI signal transduction and store-operated Ca(2+) entry in human mast cells. Cell Signal 71:109617. https://doi.org/10.1016/j.cellsig.2020.109617

Kim M, Kwon Y, Jung HS, Kim Y, Jeoung D (2019) FcεRI-HDAC3-MCP1 signaling axis promotes passive anaphylaxis mediated by cellular interactions. Int J Mol Sci 20(19):4964. https://doi.org/10.3390/ijms20194964

Andrews NL, Pfeiffer JR, Martinez AM, Haaland DM, Davis RW, Kawakami T, Oliver JM, Wilson BS, Lidke DS (2009) Small, mobile FcepsilonRI receptor aggregates are signaling competent. Immunity 31(3):469–79. https://doi.org/10.1016/j.immuni.2009.06.026

Carroll-Portillo A, Spendier K, Pfeiffer J et al (2010) Formation of a mast cell synapse: Fc epsilon RI membrane dynamics upon binding mobile or immobilized ligands on surfaces. J Immunol 184(3):1328–38. https://doi.org/10.4049/jimmunol.0903071

Gast M, Preisinger C, Nimmerjahn F, Huber M (2018) IgG-independent co-aggregation of FcεRI and FcγRIIB results in LYN- and SHIP1-dependent tyrosine phosphorylation of FcγRIIB in murine bone marrow-derived mast cells. Front Immunol 9:1937. https://doi.org/10.3389/fimmu.2018.01937

Mahajan A and LA Youssef (2017) Allergen valency, dose, and FcεRI occupancy set thresholds for secretory responses to Pen a 1 and motivate design of hypoallergens. J Immunol 198(3):1034–1046. https://doi.org/10.4049/jimmunol.1601334

Huber M, Gibbs BF (2015) SHIP1 and the negative control of mast cell/basophil activation by supra-optimal antigen concentrations. Mol Immunol 63(1):32–7. https://doi.org/10.1016/j.molimm.2014.02.017

Suzuki R, Leach S, Liu W, Ralston E, Scheffel J, Zhang W, Lowell CA, Rivera J (2014) Molecular editing of cellular responses by the high-affinity receptor for IgE. Science 343(6174):1021–5. https://doi.org/10.1126/science.1246976

Bucaite G, Kang-Pettinger T, Moreira J, Gould HJ (2019) Interplay between affinity and valency in effector cell degranulation: a model system with polcalcin allergens and human patient-derived IgE antibodies. J Immunol 203(7):1693–1700. https://doi.org/10.4049/jimmunol.1900509

Nagata Y, Suzuki R (2021) FcεRI cluster size determines effective mast cell desensitization without effector responses in vitro. Int Arch Allergy Immunol 183(4):453–461. https://doi.org/10.1159/000520132

Hemmings O, Niazi U, Kwok M, James LK, Lack G, Santos AF (2021) Peanut diversity and specific activity are the dominant IgE characteristics for effector cell activation in children. J Allergy Clin Immunol 148(2):495–505.e14. https://doi.org/10.1016/j.jaci.2021.02.029

Bag N, Wagenknecht-Wiesner A, Lee A, Shi SM, Holowka DA, Baird BA (2021) Lipid-based and protein-based interactions synergize transmembrane signaling stimulated by antigen clustering of IgE receptors. Proc Natl Acad Sci USA 118(35):e2026583118. https://doi.org/10.1073/pnas.2026583118

Travers T, Kanagy WA, Mansbach RA, Jhamba E, Cleyrat C, Goldstein B, Lidke DS, Wilson BS, Gnanakaran S (2019) Combinatorial diversity of Syk recruitment driven by its multivalent engagement with FcεRIγ. Mol Biol Cell 30(17):2331–2347. https://doi.org/10.1091/mbc.E18-11-0722

Simonowski A, Wilhelm T, Habib P, Zorn CN, Huber M (2020) Differential use of BTK and PLC in FcεRI- and KIT-mediated mast cell activation: a marginal role of BTK upon KIT activation. Biochim Biophys Acta Mol Cell Res 1867(4):118622. https://doi.org/10.1016/j.bbamcr.2019.118622

Park YH, Kim DK, Kim HS et al (2019) WZ3146 inhibits mast cell Lyn and Fyn to reduce IgE-mediated allergic responses in vitro and in vivo. Toxicol Appl Pharmacol 383: 114763. https://doi.org/10.1016/j.taap.2019.114763

Schwartz SL, Cleyrat C, Olah MJ, Relich PK, Phillips GK, Hlavacek WS, Lidke KA, Wilson BS, Lidke DS (2017) Differential mast cell outcomes are sensitive to FcεRI-Syk binding kinetics. Mol Biol Cell 28(23):3397–3414. https://doi.org/10.1091/mbc.E17-06-0350

Harmon B, Chylek LA, Liu Y et al (2017) Timescale separation of positive and negative signaling creates history-dependent responses to IgE receptor stimulation. Sci Rep 7(1):15586. https://doi.org/10.1038/s41598-017-15568-2

Dispenza MC, Krier-Burris RA, Chhiba KD, Undem BJ, Robida PA, Bochner BZ (2020) Bruton’s tyrosine kinase inhibition effectively protects against human IgE-mediated anaphylaxis. J Clin Invest 130(9):4759–4770. https://doi.org/10.1172/jci138448

Sanderson MP, Wex E, Kono T, Uto K, Schnapp A (2010) Syk and Lyn mediate distinct Syk phosphorylation events in FcɛRI-signal transduction: implications for regulation of IgE-mediated degranulation. Mol Immunol 48(1–3):171–8. https://doi.org/10.1016/j.molimm.2010.08.012

Hammel I, Lagunoff D, Galli SJ (2010) Regulation of secretory granule size by the precise generation and fusion of unit granules. J Cell Mol Med 14(7):1904–16. https://doi.org/10.1111/j.1582-4934.2010.01071.x

Leong E, Pang Z, Stadnyk AW, Lin TJ (2021) Calcineurin Aα contributes to IgE-dependent mast-cell mediator secretion in allergic inflammation. J Innate Immun: 1–15. https://doi.org/10.1159/000520040

Fahrner M, Schindl R, Romanin C (2018) Studies of structure-function and subunit composition of Orai/STIM Channel, in calcium entry channels in non-excitable cells, J.A. Kozak and J.W. Putney, Jr., Editors. CRC Press/Taylor & Francis © 2017 by Taylor & Francis Group, LLC.: Boca Raton (FL). p. 25–50

Sun R, Yang Y, Ran X, Yang T (2016) Calcium influx of mast cells is inhibited by aptamers targeting the first extracellular domain of Orai1. PLoS One 11(7):e0158223. https://doi.org/10.1371/journal.pone.0158223

Tsvilovskyy V, Solís-López A, Schumacher D, Medert R, Roers A, Kriebs U, Freichel M (2018) Deletion of Orai2 augments endogenous CRAC currents and degranulation in mast cells leading to enhanced anaphylaxis. Cell Calcium 71: 24–33. https://doi.org/10.1016/j.ceca.2017.11.004

Arlt E, Fraticelli M, Tsvilovskyy V (2020) TPC1 deficiency or blockade augments systemic anaphylaxis and mast cell activity. Proc Natl Acad Sci USA 117(30):18068–18078. https://doi.org/10.1073/pnas.1920122117

Wu T, Ma L, Jin X et al (2021) S100A4 is critical for a mouse model of allergic asthma by impacting mast cell activation. Front Immunol 12: 692733. https://doi.org/10.1016/j.bcp.2021.114722https://doi.org/10.3389/fimmu.2021.692733

Cardenas RA, Gonzalez R, Sanchez E et al (2021) SNAP23 is essential for platelet and mast cell development and required in connective tissue mast cells for anaphylaxis. J Biol Chem 296:100268. https://doi.org/10.1016/j.jbc.2021.100268

Agarwal V, Naskar P, Agasti S, Khurana GK, Vishwakarma P, Lynn AM, Roche PA, Puri N (2019) The cysteine-rich domain of synaptosomal-associated protein of 23 kDa (SNAP-23) regulates its membrane association and regulated exocytosis from mast cells. Biochim Biophys Acta Mol Cell Res 1866(10):1618–1633. https://doi.org/10.1016/j.bbamcr.2019.06.015

Sanchez E, Gonzalez EA, Moreno DS et al (2019) Syntaxin 3, but not syntaxin 4, is required for mast cell-regulated exocytosis, where it plays a primary role mediating compound exocytosis. J Biol Chem 294(9):3012–3023. https://doi.org/10.1074/jbc.RA118.005532

Madera-Salcedo IK, Danelli L, Tiwari N (2018) Tomosyn functions as a PKCδ-regulated fusion clamp in mast cell degranulation. Sci Signal 11(537):eaan4350. https://doi.org/10.1126/scisignal.aan4350

Cabeza JM, Acosta J, Alés E (2013) Mechanisms of granule membrane recapture following exocytosis in intact mast cells. J Biol Chem 288(28):20293-305. https://doi.org/10.1074/jbc.M113.459065

Sharma N, Ponce M, Kaul S, Pan Z, Berry DM, Eiwegger T, McGlade CJ (2019) SLAP is a negative regulator of FcεRI receptor-mediated signaling and allergic response. Front Immunol 10:1020. https://doi.org/10.3389/fimmu.2019.01020

Lin KC, Huang DY, Huang DW, Tzeng SJ, Lin WW (2016) Inhibition of AMPK through Lyn-Syk-Akt enhances FcεRI signal pathways for allergic response. J Mol Med (Berl) 94(2):183–94. https://doi.org/10.1007/s00109-015-1339-2

Jin F, Li X, Deng Y et al (2019) The orphan nuclear receptor NR4A1 promotes FcεRI-stimulated mast cell activation and anaphylaxis by counteracting the inhibitory LKB1/AMPK axis. Allergy 74(6):1145–1156. https://doi.org/10.1111/all.13702

Chang HW, Kanegasaki S (2020) A common signaling pathway leading to degranulation in mast cells and its regulation by CCR1-ligand. Allergy 75(6):1371–1381. https://doi.org/10.1111/all.14186

Ohneda K, Ohmori S, Yamamoto M (2019) Mouse tryptase gene expression is coordinately regulated by GATA1 and GATA2 in bone marrow-derived mast cells. Int J Mol Sci 20(18):4603. https://doi.org/10.3390/ijms20184603

Kasakura K, Nagata K, Miura R (2020) Cooperative regulation of the mucosal mast cell-specific protease genes Mcpt1 and Mcpt2 by GATA and Smad transcription factors. J Immunol 204(6):1641–1649. https://doi.org/10.4049/jimmunol.1900094

Li Y, Gao J (2021) GATA2 regulates mast cell identity and responsiveness to antigenic stimulation by promoting chromatin remodeling at super-enhancers. Nat Commun 12(1):494. https://doi.org/10.1038/s41467-020-20766-0

Ohmori S, Moriguchi T, Noguchi Y et al (2015) GATA2 is critical for the maintenance of cellular identity in differentiated mast cells derived from mouse bone marrow. Blood 125(21):3306–15. https://doi.org/10.1182/blood-2014-11-612465

Li Y, Liu B, Harmacek L et al (2018) The transcription factors GATA2 and microphthalmia-associated transcription factor regulate Hdc gene expression in mast cells and are required for IgE/mast cell-mediated anaphylaxis. J Allergy Clin Immunol 142(4):1173–1184. https://doi.org/10.1007/s11882-018-0756-zhttps://doi.org/10.1016/j.jaci.2017.10.043

Kobayashi T, Shimabukuro-Demoto S, Tsutsui H, Toyama-Sorimachi N (2019) Type I interferon limits mast cell-mediated anaphylaxis by controlling secretory granule homeostasis. PLoS Biol 17(11):e3000530. https://doi.org/10.1371/journal.pbio.3000530

Oda Y, Kasakura K, Fujigaki I, Kageyama A, Okumura K, Ogawa H, Yashiro T, Nishiyama C (2018) The effect of PU.1 knockdown on gene expression and function of mast cells. Sci Rep 8(1):2005. https://doi.org/10.1111/imr.12622https://doi.org/10.1038/s41598-018-19378-y

Chelombitko MA, Chernyak BV, Fedorov AV, Zinovkin RA, Razin E, Paruchuru LB (2020) The role played by mitochondria in FcεRI-dependent mast cell activation. Front Immunol 11:584210. https://doi.org/10.3389/fimmu.2020.584210

Paruchuru LB, Govindaraj S, Razin E (2022) The critical role played by mitochondrial MITF serine 73 phosphorylation in immunologically activated mast cells. Cells 11(3):589. https://doi.org/10.3390/cells11030589

Sharkia I, Hadad Erlich T, Landolina N et al (2017) Pyruvate dehydrogenase has a major role in mast cell function, and its activity is regulated by mitochondrial microphthalmia transcription factor. J Allergy Clin Immunol 140(1):204–214.e8. https://doi.org/10.1016/j.jaci.2016.09.047

Moñino-Romero S, Erkert L, Schmidthaler K, Diesner SC, Sallis BF, Pennington L (2019) The soluble isoform of human FcɛRI is an endogenous inhibitor of IgE-mediated mast cell responses. Allergy 74(2):236–245. https://doi.org/10.1111/all.13567

Xie G, Yang H, Peng X et al (2018) Mast cell exosomes can suppress allergic reactions by binding to IgE. J Allergy Clin Immunol 141(2):788–791. https://doi.org/10.1016/j.jaci.2017.07.040

Krajewski D, Polukort SH, Gelzinis J et al (2020) Protein disulfide isomerases regulate IgE-mediated mast cell responses and their inhibition confers protective effects during food allergy. Front Immunol 11:606837. https://doi.org/10.3389/fimmu.2020.606837

Li X, Kanegasaki S, Jin F, Deng Y, Kim JR, Chang HW, Tsuchiya T (2018) Simultaneous induction of HSP70 expression, and degranulation, in IgE/Ag-stimulated or extracellular HSP70-stimulated mast cells. Allergy 73(2):361–368. https://doi.org/10.1111/all.13296

Folkerts J, Redegeld F, Folkerts G, Blokhuis B, van den Berg MPM, de Bruijn MWJ, van IWJF (2020) Butyrate inhibits human mast cell activation via epigenetic regulation of FcεRI-mediated signaling. Allergy 75(8):1966–1978. https://doi.org/10.1111/all.14254

Doré KA, Kashiwakura JI, McDonnell JM, Gould HJ, Kawakami T, Sutton BJ, Davies AM (2018) Crystal structures of murine and human Histamine-Releasing Factor (HRF/TCTP) and a model for HRF dimerisation in mast cell activation. Mol Immunol 93:216–222. https://doi.org/10.1016/j.molimm.2017.11.022

Brosnan ME, Brosnan JT (2020) Histidine metabolism and function. J Nutr 150(Suppl 1):2570s-2575s. https://doi.org/10.1093/jn/nxaa079

Kawakami Y, Kurosawa Y, Oltean D et al (2022) Novel inhibitors of histamine-releasing factor suppress food allergy in a murine model. Allergol Int 71(1):147–149. https://doi.org/10.1016/j.alit.2021.07.005

Jo-Watanabe A, Okuno T (2019) The role of leukotrienes as potential therapeutic targets in allergic disorders. Int J Mol Sci 20(14):3580. https://doi.org/10.3390/ijms20143580

Lee K, Lee SH, Kim TH (2020) The biology of prostaglandins and their role as a target for allergic airway disease therapy. Int J Mol Sci 21(5):1851. https://doi.org/10.3390/ijms21051851

Koga T, Sasaki F, Saeki K, Tsuchiya S, Okuno T, Ohba M, Ichiki T, Iwamoto S (2021) Expression of leukotriene B(4) receptor 1 defines functionally distinct DCs that control allergic skin inflammation. Cell Mol Immunol 18(6):1437–1449. https://doi.org/10.1038/s41423-020-00559-7

Xiong Y, Cui X, Li W et al (2019) BLT1 signaling in epithelial cells mediates allergic sensitization via promotion of IL-33 production. Allergy 74(3):495–506. https://doi.org/10.1111/all.13656

Peebles Jr. RS (2019) Prostaglandins in asthma and allergic diseases. Pharmacol Ther 193: 1–19. https://doi.org/10.1016/j.pharmthera.2018.08.001

Rastogi S, Willmes DM, Nassiri M, Babina M, Worm M (2020) PGE(2) deficiency predisposes to anaphylaxis by causing mast cell hyperresponsiveness. J Allergy Clin Immunol 146(6):1387–1396.e13. https://doi.org/10.1016/j.jaci.2020.03.046

Plaza J, Torres R (2020) In vitro and in vivo validation of EP2-receptor agonism to selectively achieve inhibition of mast cell activity. Allergy Asthma Immunol Res 12(4):712–728. https://doi.org/10.1016/j.alit.2020.04.001https://doi.org/10.4168/aair.2020.12.4.712

Tacquard C, Oulehri W, Collange O, Garvey LH, Nicoll S, Tuzin N, Geny B, Mertes PM (2020) Treatment with a platelet-activating factor receptor antagonist improves hemodynamics and reduces epinephrine requirements, in a lethal rodent model of anaphylactic shock. Clin Exp Allergy 50(3):383–390. https://doi.org/10.1111/cea.13540

Khan MI, Hariprasad G (2020) Structural modeling of wild and mutant forms of human plasma platelet activating factor-acetyl hydrolase enzyme. J Inflamm Res 13: 1125–1139. https://doi.org/10.2147/jir.s274940

Schauberger E, Peinhaupt M, Cazares T, Lindsley AW (2016) Lipid mediators of allergic disease: pathways, treatments, and emerging therapeutic targets. Curr Allergy Asthma Rep 16(7):48. https://doi.org/10.1007/s11882-016-0628-3

Hox V, Desai A, Bandara G, Gilfillan AM, Metcalfe DD, Olivera A (2015) Estrogen increases the severity of anaphylaxis in female mice through enhanced endothelial nitric oxide synthase expression and nitric oxide production. J Allergy Clin Immunol 135(3):729–36.e5. https://doi.org/10.1016/j.jaci.2014.11.003

Stuehr DJ, Misra S, Dai Y, Ghosh A (2021) Maturation, inactivation, and recovery mechanisms of soluble guanylyl cyclase. J Biol Chem 296:100336. https://doi.org/10.1016/j.jbc.2021.100336

Ghosh A, Koziol-White CJ, Asosingh K et al (2016) Soluble guanylate cyclase as an alternative target for bronchodilator therapy in asthma. Proc Natl Acad Sci USA 113(17):E2355–62. https://doi.org/10.1073/pnas.1524398113

Ramu S, Akbarshahi H, Mogren S et al (2021) Direct effects of mast cell proteases, tryptase and chymase, on bronchial epithelial integrity proteins and anti-viral responses. BMC Immunol 22(1):35. https://doi.org/10.1186/s12865-021-00424-w

Zhou X, Wei T, Cox CW, Jiang Y, Roche WR, Walls AF (2019) Mast cell chymase impairs bronchial epithelium integrity by degrading cell junction molecules of epithelial cells. Allergy 74(7):1266–1276. https://doi.org/10.1111/all.13666

Berlin F, Mogren S, Tutzauer J (2021) Mast cell proteases tryptase and chymase induce migratory and morphological alterations in bronchial epithelial cells. Int J Mol Sci 22(10):5250. https://doi.org/10.3390/ijms22105250

Metz M, Torene R, Kaiser S et al (2019) Omalizumab normalizes the gene expression signature of lesional skin in patients with chronic spontaneous urticaria: a randomized, double-blind, placebo-controlled study. Allergy 74(1):141–151. https://doi.org/10.1111/all.13547

Dispenza MC, Bochner BS, MacGlashan Jr. DW (2020) Targeting the FcεRI pathway as a potential strategy to prevent food-induced anaphylaxis. Front Immunol 11: 614402. https://doi.org/10.3389/fimmu.2020.614402

Fiocchi A, Vickery BP, Wood RA (2021) The use of biologics in food allergy. Clin Exp Allergy 51(8):1006–1018. https://doi.org/10.1111/cea.13897

Shamji MH, Palmer E, Layhadi JA, Moraes TJ, Eiwegger T (2021) Biological treatment in allergic disease. Allergy 76(9):2934–2937. https://doi.org/10.1111/all.14954

Davies AM, Allan EG, Keeble AH et al (2017) Allosteric mechanism of action of the therapeutic anti-IgE antibody omalizumab. J Biol Chem 292(24):9975–9987. https://doi.org/10.1074/jbc.M117.776476

Jensen RK, Jabs F, Miehe M, Mølgaard B, and W Pfützner (2020) Structure of intact IgE and the mechanism of ligelizumab revealed by electron microscopy. Allergy 75(8):1956-1965.https://doi.org/10.1111/all.14222

Wedi B, Traidl S (2021) Anti-IgE for the treatment of chronic urticaria. Immunotargets Ther 10: 27–45. https://doi.org/10.2147/itt.s261416

Ando T, Kitaura J (2021) Tuning IgE: IgE-associating molecules and their effects on IgE-dependent mast cell reactions. Cells 10(7). https://doi.org/10.3390/cells10071697

Chang X (2021) Low-affinity but high-avidity interactions may offer an explanation for IgE-mediated allergen cross-reactivity. Einstein (Sao Paulo) 76(8):2565–2574. https://doi.org/10.31744/einstein_journal/2021MD5703https://doi.org/10.1111/all.14864

Zhang K, Elias M, Zhang H, Liu J, Kepley C, Bai Y, Metcalfe DD (2019) Inhibition of allergic reactivity through targeting FcεRI-bound IgE with humanized low-affinity antibodies. J Immunol 203(11):2777–2790. https://doi.org/10.4049/jimmunol.1900112

Orengo JM, Radin AR, Kamat V et al (2018) Treating cat allergy with monoclonal IgG antibodies that bind allergen and prevent IgE engagement. Nat Commun 9(1):1421. https://doi.org/10.1038/s41467-018-03636-8

Khodoun MV, Morris SC, Angerman E et al (2020) Rapid desensitization of humanized mice with anti-human FcεRIα monoclonal antibodies. J Allergy Clin Immunol 145(3):907–921.e3. https://doi.org/10.1016/j.jaci.2019.12.003

Khodoun MV, Morris SC, Shao WH et al (2021) Suppression of IgE-mediated anaphylaxis and food allergy with monovalent anti-FcεRIα mAbs. J Allergy Clin Immunol 147(5):1838–1854.e4. https://doi.org/10.1016/j.jaci.2020.10.045

Khodoun MV, Tomar S, Tocker JE, Wang YH, Finkelman FD (2018) Prevention of food allergy development and suppression of established food allergy by neutralization of thymic stromal lymphopoietin, IL-25, and IL-33. J Allergy Clin Immunol 141(1):171–179.e1. https://doi.org/10.1016/j.jaci.2017.02.046

Duan S, Koziol-White CJ, Jester Jr. WF, Smith SA, Nycholat CM, Macauley MS, Panettieri Jr. RA, Paulson JC (2019) CD33 recruitment inhibits IgE-mediated anaphylaxis and desensitizes mast cells to allergen. J Clin Invest 129(3):1387–1401. https://doi.org/10.1172/jci125456

Hu J, Chen J, Ye L, Cai Z, Sun J, Ji K (2018) Anti-IgE therapy for IgE-mediated allergic diseases: from neutralizing IgE antibodies to eliminating IgE(+) B cells. Clin Transl Allergy 8: 27. https://doi.org/10.1186/s13601-018-0213-z

Muñoz-Cano R, Pascal M, Araujo G, Goikoetxea MJ, Valero AL, Picado C, Bartra J (2017) Mechanisms, cofactors, and augmenting factors involved in anaphylaxis. Front Immunol 8:1193. https://doi.org/10.3389/fimmu.2017.01193

Versluis A, van Os-Medendorp H, Blom WM, Michelsen-Huisman AD, Castenmiller AAD, Noteborn H, Houben GF, Knulst AC (2019) Potential cofactors in accidental food allergic reactions are frequently present but may not influence severity and occurrence. Clin Exp Allergy 49(2):207–215. https://doi.org/10.1111/cea.13282

留言 (0)

沒有登入
gif