Postnatal developmental trajectory of sex-biased gene expression in the mouse pituitary gland

Ooi GT, Tawadros N, Escalona RM. Pituitary cell lines and their endocrine applications. Mol Cell Endocrinol. 2004;228:1–21. https://doi.org/10.1016/j.mce.2004.07.018.

CAS  Article  PubMed  Google Scholar 

Baylis PH, Ball S. The neurohypophysis: endocrinology of vasopressin and oxytocin. In: De Groot LJ, Beck-Peccoz P, Chrousos G, Dungan K, Grossman A, Hershman JM, Koch C, McLachlan R, New M, Rebar R, Singer F, Vinik A, Weickert MO, Editors. Endotext. MDText.com, Inc., South Dartmouth (MA); 2000.

Bucy PC. The pars nervosa of the bovine hypophysis. J Comp Neurol. 1930;50:505–19. https://doi.org/10.1002/cne.900500209.

Article  Google Scholar 

Fauquier T, Lacampagne A, Travo P, Bauer K, Mollard P. Hidden face of the anterior pituitary. Trends Endocrinol Metab. 2002;13:304–9.

CAS  Article  Google Scholar 

Yoshida S, Kato T, Yako H, Susa T, Cai LY, Osuna M, Inoue K, Kato Y. Significant quantitative and qualitative transition in pituitary stem / progenitor cells occurs during the postnatal development of the rat anterior pituitary. J Neuroendocrinol. 2011;23:933–43. https://doi.org/10.1111/j.1365-2826.2011.02198.x.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Waxman DJ, O’Connor C. Growth hormone regulation of sex-dependent liver gene expression. Mol Endocrinol. 2006;20:2613–29. https://doi.org/10.1210/me.2006-0007.

CAS  Article  PubMed  Google Scholar 

Agustsson TT, Baldvinsdottir T, Jonasson JG, Olafsdottir E, Steinthorsdottir V, Sigurdsson G, Thorsson AV, Carroll PV, Korbonits M, Benediktsson R. The epidemiology of pituitary adenomas in Iceland, 1955–2012: a nationwide population-based study. Eur J Endocrinol. 2015;173(5):655–64. https://doi.org/10.1530/EJE-15-0189.

CAS  Article  PubMed  Google Scholar 

Mindermann T, Wilson CB. Age-related and gender-related occurrence of pituitary adenomas. Clin Endocrinol (Oxf). 1994;41(3):359–64. https://doi.org/10.1111/j.1365-2265.1994.tb02557.x.

CAS  Article  PubMed  Google Scholar 

Bjelobaba I, Janjic MM, Kucka M, Stojilkovic SS. Cell type-specific sexual dimorphism in rat pituitary gene expression during maturation. Biol Reprod. 2015;93:21. https://doi.org/10.1095/biolreprod.115.129320.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Nishida Y, Yoshioka M, St-Amand J. Sexually dimorphic gene expression in the hypothalamus, pituitary gland, and cortex. Genomics. 2005;85:679–87. https://doi.org/10.1016/j.ygeno.2005.02.013.

CAS  Article  PubMed  Google Scholar 

Gershoni M, Pietrokovski S. The landscape of sex-differential transcriptome and its consequent selection in human adults. BMC Biol. 2017;15:7. https://doi.org/10.1186/s12915-017-0352-z.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lopes-Ramos CM, Chen C-Y, Kuijjer ML, Paulson JN, Sonawane AR, Fagny M, Platig J, Glass K, Quackenbush J, DeMeo DL. Sex differences in gene expression and regulatory networks across 29 human tissues. Cell Rep. 2020;31: 107795. https://doi.org/10.1016/j.celrep.2020.107795.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Oliva M, Muñoz-Aguirre M, Kim-Hellmuth S, Wucher V, Gewirtz ADH, Cotter DJ, Parsana P, Kasela S, Balliu B, Viñuela A, Castel SE, Mohammadi P, Aguet F, Zou Y, Khramtsova EA, Skol AD, Garrido-Martín D, Reverter F, Brown A, Evans P, Gamazon ER, Payne A, Bonazzola R, Barbeira AN, Hamel AR, Martinez-Perez A, Soria JM, Pierce BL, Stephens M, Eskin E, Dermitzakis ET, Segrè AV, Im HK, Engelhardt BE, Ardlie KG, Montgomery SB, Battle AJ, Lappalainen T, Guigó R, Stranger BE, GTEx Consortium. The impact of sex on gene expression across human tissues. Science. 2020. https://doi.org/10.1126/science.aba3066.

Article  PubMed  PubMed Central  Google Scholar 

Fletcher PA, Smiljanic K, Maso Prévide R, Iben JR, Li T, Rokic MB, Sherman A, Coon SL, Stojilkovic SS. Cell type- and sex-dependent transcriptome profiles of rat anterior pituitary cells. Front Endocrinol (Lausanne). 2019;10:623. https://doi.org/10.3389/fendo.2019.00623.

Article  Google Scholar 

Ho Y, Hu P, Peel MT, Chen S, Camara PG, Epstein DJ, Wu H, Liebhaber SA. Single-cell transcriptomic analysis of adult mouse pituitary reveals sexual dimorphism and physiologic demand-induced cellular plasticity. Protein Cell. 2020;11:565–83. https://doi.org/10.1007/s13238-020-00705-x.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ruf-Zamojski F, Zhang Z, Zamojski M, Smith GR, Mendelev N, Liu H, Nudelman G, Moriwaki M, Pincas H, Castanon RG, Nair VD, Seenarine N, Amper MAS, Zhou X, Ongaro L, Toufaily C, Schang G, Nery JR, Bartlett A, Aldridge A, Jain N, Childs GV, Troyanskaya OG, Ecker JR, Turgeon JL, Welt CK, Bernard DJ, Sealfon SC. Single nucleus multi-omics regulatory landscape of the murine pituitary. Nat Commun. 2021;12:2677. https://doi.org/10.1038/s41467-021-22859-w.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hou H, Uusküla-Reimand L, Makarem M, Corre C, Saleh S, Metcalf A, Goldenberg A, Palmert MR, Wilson MD. Gene expression profiling of puberty-associated genes reveals abundant tissue and sex-specific changes across postnatal development. Hum Mol Genet. 2017;26:3585–99. https://doi.org/10.1093/hmg/ddx246.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Qiao S, Nordström K, Muijs L, Gasparoni G, Tierling S, Krause E, Walter J, Boehm U. Molecular plasticity of male and female murine gonadotropes revealed by mRNA sequencing. Endocrinology. 2016;157:1082–93. https://doi.org/10.1210/en.2015-1836.

CAS  Article  PubMed  Google Scholar 

Bak M, Silahtaroglu A, Møller M, Christensen M, Rath MF, Skryabin B, Tommerup N, Kauppinen S. MicroRNA expression in the adult mouse central nervous system. RNA. 2008;14:432–44. https://doi.org/10.1261/rna.783108.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bottoni A, Zatelli MC, Ferracin M, Tagliati F, Piccin D, Vignali C, Calin GA, Negrini M, Croce CM, Degli Uberti EC. Identification of differentially expressed microRNAs by microarray: a possible role for microRNA genes in pituitary adenomas. J Cell Physiol. 2007;210:370–7. https://doi.org/10.1002/jcp.20832.

CAS  Article  PubMed  Google Scholar 

Ye J, Yao Z, Si W, Gao X, Yang C, Liu Y, Ding J, Huang W, Fang F, Zhou J. Identification and characterization of microRNAs in the pituitary of pubescent goats. Reprod Biol Endocrinol. 2018;16:51. https://doi.org/10.1186/s12958-018-0370-x.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ye R-S, Li M, Qi Q-E, Cheng X, Chen T, Li C-Y, Wang S-B, Shu G, Wang L-N, Zhu X-T, Jiang Q-Y, Xi Q-Y, Zhang Y-L. Comparative anterior pituitary miRNA and mRNA expression profiles of Bama Minipigs and Landrace Pigs reveal potential molecular network involved in animal postnatal growth. PLoS ONE. 2015;10: e0131987. https://doi.org/10.1371/journal.pone.0131987.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Yuan B, Han D-X, Dai L-S, Gao Y, Ding Y, Yu X-F, Chen J, Jiang H, Chen C-Z, Zhang J-B. A comprehensive expression profile of micrornas in rat’s pituitary. Int J Clin Exp Med. 2015;8:13289–95.

CAS  PubMed  PubMed Central  Google Scholar 

Zhang H, Qi Q, Chen T, Luo J, Xi Q, Jiang Q, Sun J, Zhang Y. Age-related changes in microRNA in the rat pituitary and potential role in GH regulation. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19072058.

Article  PubMed  PubMed Central  Google Scholar 

Hao P, Waxman DJ. Functional roles of sex-biased, growth hormone-regulated microRNAs miR-1948 and miR-802 in young adult mouse liver. Endocrinology. 2018;159:1377–92. https://doi.org/10.1210/en.2017-03109.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Morgan CP, Bale TL. Sex differences in microRNA-mRNA networks: examination of novel epigenetic programming mechanisms in the sexually dimorphic neonatal hypothalamus. Biol Sex Differ. 2017;8:27. https://doi.org/10.1186/s13293-017-0149-3.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Danilovich N, Wernsing D, Coschigano KT, Kopchick JJ, Bartke A. Deficits in female reproductive function in GH-R-KO mice; role of IGF-I. Endocrinology. 1999;140:2637–40. https://doi.org/10.1210/endo.140.6.6992.

CAS  Article  PubMed  Google Scholar 

Korenbrot CC, Huhtaniemi IT, Weiner RI. Preputial separation as an external sign of pubertal development in the male rat. Biol Reprod. 1977;17:298–303. https://doi.org/10.1095/biolreprod17.2.298.

CAS  Article  PubMed  Google Scholar 

Sánchez-Garrido MA, Castellano JM, Ruiz-Pino F, Garcia-Galiano D, Manfredi-Lozano M, Leon S, Romero-Ruiz A, Diéguez C, Pinilla L, Tena-Sempere M. Metabolic programming of puberty: sexually dimorphic responses to early nutritional challenges. Endocrinology. 2013;154:3387–400. https://doi.org/10.1210/en.2012-2157.

CAS  Article  PubMed  Google Scholar 

Yuki KE, Eyck TT, Bannister S, Kyriakopoulou L, Shlien A, Wilson MD. Automation of the Lexogen QuantSeq3’ mRNA Kit on the Agilent NGS workstation produces high-qualitysequencing libraries. Agilent Technologies. 2018.

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. https://doi.org/10.1093/bioinformatics/bts635.

CAS  Article  PubMed  Google Scholar 

Okonechnikov K, Conesa A, García-Alcalde F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics. 2016;32:292–4. https://doi.org/10.1093/bioinformatics/btv566.

CAS  Article  PubMed  Google Scholar 

Collado-Torres L, Nellore A, Frazee AC, Wilks C, Love MI, Langmead B, Irizarry RA, Leek JT, Jaffe AE. Flexible expressed region analysis for RNA-seq with derfinder. Nucleic Acids Res. 2017;45: e9. https://doi.org/10.1093/nar/gkw852.

CAS  Article  PubMed  Google Scholar 

Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30. https://doi.org/10.1093/bioinformatics/btt656.

CAS  Article  PubMed 

留言 (0)

沒有登入
gif