Blood donor biobank and HLA imputation as a resource for HLA homozygous cells for therapeutic and research use

Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood. 2005;105:3051–7.

CAS  Article  Google Scholar 

Pigeau GM, Csaszar E, Dulgar-Tulloch A. Commercial scale manufacturing of allogeneic cell therapy. Front Med. 2018;5:1–8.

Article  Google Scholar 

Badillo AT, Beggs KJ, Javazon EH, Tebbets JC, Flake AW. Murine bone marrow stromal progenitor cells elicit an in vivo cellular and humoral alloimmune response. Biol Blood Marrow Transplant. 2007;13:412–22.

CAS  Article  Google Scholar 

Sullivan S, Fairchild PJ, Marsh SGE, Müller CR, Turner ML, Song J, et al. Haplobanking induced pluripotent stem cells for clinical use. Stem Cell Res [Internet]. 2020;49:102035. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1873506120303366

Barry J, Hyllner J, Stacey G, Taylor CJ, Turner M. Setting up a haplobank: issues and solutions. Curr Stem Cell Reports. 2015;1:110–7.

Article  Google Scholar 

Martin PJ, Levine DM, Storer BE, Warren EH, Zheng X, Nelson SC, et al. Genome-wide minor histocompatibility matching as related to the risk of graft-versus-host disease. Blood J Am Soc Hematol. 2018;129:791–9.

Google Scholar 

Spellman SR, Eapen M, Logan BR, Mueller C, Rubinstein P, Setterholm MI, et al. A perspective on the selection of unrelated donors and cord blood units for transplantation. Blood. 2012;120:259–65.

CAS  Article  Google Scholar 

Taylor CJ, Bolton EM, Pocock S, Sharples LD, Pedersen RA, Bradley JA. Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet Elsevier. 2005;366:2019–25.

Article  Google Scholar 

Nakatsuji N, Nakajima F, Tokunaga K. HLA-haplotype banking and iPS cells. Nat Biotechnol. 2008;26:739–40.

CAS  Article  Google Scholar 

Lee S, Huh JY, Turner DM, Lee S, Robinson J, Stein JE, et al. Repurposing the cord blood bank for haplobanking of HLA-homozygous iPSCs and their usefulness to multiple populations. Stem Cells [Internet]. 2018;36:1552–66. Available from: https://academic.oup.com/stmcls/article/36/10/1552-1566/6423921

Pappas DJ, Gourraud P-A, Le Gall C, Laurent J, Trounson A, DeWitt N, et al. Proceedings: human leukocyte antigen haplo-homozygous induced pluripotent stem cell haplobank modeled after the California population: evaluating matching in a multiethnic and admixed population. Stem Cells Transl Med [Internet]. 2015; 4:413–8. Available from: https://academic.oup.com/stcltm/article/4/5/413-418/6397381

Shin S, Song EY, Kwon Y-W, Oh S, Park H, Kim N-H, et al. Usefulness of the hematopoietic stem cell donor pool as a source of HLA-homozygous induced pluripotent stem cells for haplobanking: combined analysis of the cord blood inventory and bone marrow donor registry. Biol Blood Marrow Transplant [Internet]. 2020;26:e202–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1083879120302913

Álvarez-Palomo B, García-Martinez I, Gayoso J, Raya A, Veiga A, Abad ML, et al. Evaluation of the Spanish population coverage of a prospective HLA haplobank of induced pluripotent stem cells. Stem Cell Res Ther. 2021;12:4–11.

Article  Google Scholar 

Gourraud PA, Gilson L, Girard M, Peschanski M. The role of human leukocyte antigen matching in the development of multiethnic “haplobank” of induced pluripotent stem cell lines. Stem Cells. 2012;30:180–6.

CAS  Article  Google Scholar 

Trowsdale J, Knight JC. Major histocompatibility complex genomics and human disease. Annu Rev Genomics Hum Genet. 2013;14:301–23.

CAS  Article  Google Scholar 

Zheng X, Shen J, Cox C, Wakefield JC, Ehm MG, Nelson MR, et al. HIBAG - HLA genotype imputation with attribute bagging. Pharmacogen J Nat Publ Group. 2014;14:192–200.

CAS  Google Scholar 

Ritari J, Hyvärinen K, Clancy J, FinnGen, Partanen J, Koskela S. Increasing accuracy of HLA imputation by a population-specific reference panel in a FinnGen biobank cohort. NAR Genomics Bioinforma 2020;2: 30.

Dilthey AT, Moutsianas L, Leslie S, McVean G. HLA*IMP--an integrated framework for imputing classical HLA alleles from SNP genotypes. Bioinformatics [Internet]. 2011/02/07. Oxford University Press; 2011;27:968–72. Available from: https://pubmed.ncbi.nlm.nih.gov/21300701

Zheng X, Imputation-Based HLA. Typing with SNPs in GWAS Studies. Methods Mol Biol US. 2018;1802:163–76.

CAS  Article  Google Scholar 

Okada Y, Momozawa Y, Ashikawa K, Kanai M, Matsuda K, Kamatani Y, et al. Construction of a population-specific HLA imputation reference panel and its application to graves’ disease risk in Japanese. Nat Genet US. 2015;47:798–802.

CAS  Article  Google Scholar 

Vlachopoulou E, Lahtela E, Wennerström A, Havulinna AS, Salo P, Perola M, et al. Evaluation of HLA-DRB1 imputation using a finnish dataset. Tissue Antigens England. 2014;83:350–5.

CAS  Article  Google Scholar 

Huang Y-H, Khor S-S, Zheng X, Chen H-Y, Chang Y-H, Chu H-W, et al. A high-resolution HLA imputation system for the Taiwanese population: a study of the Taiwan biobank. Pharmacogen J US. 2020;20:695–704.

CAS  Article  Google Scholar 

Leslie S, Donnelly P, McVean G. A statistical method for predicting classical HLA alleles from SNP data. Am J Hum Genet. 2008;82:48–56.

CAS  Article  Google Scholar 

Mitchell R. Blood banks biobanks and the ethics of donation. Transfusion. 2010;50(9):1866–99. https://doi.org/10.1111/j.1537-2995.2010.02812.x.

Article  PubMed  Google Scholar 

Raivola V, Snell K, Helen I, Partanen J. Attitudes of blood donors to their sample and data donation for biobanking. Eur J Hum Genet. 2019;27:1659–67.

Article  Google Scholar 

Raivola V, Snell K, Pastila S, Helén I, Partanen J. Blood donors’ preferences for blood donation for biomedical research. Transfusion. 2018;58(7):1640.

Article  Google Scholar 

Gmur J, von Felten A, Frick P. Platelet support in polysensitized patients: role of HLA specificities and crossmatch testing for donor selection. Blood. 1978;51:903–9.

CAS  Article  Google Scholar 

18th international HLA & immunogenetics workshop [Internet]. [cited 2022 Feb 18]. Available from: https://www.ihiw18.org/component-immunogenetics/creating-fully-representative-mhc-reference-haplotypes/

Feola S, Chiaro J, Martins B, Cerullo V. Uncovering the tumor antigen landscape: what to know about the discovery process. Cancers (Basel) [Internet]. 2020;12:1660. Available from: https://www.mdpi.com/2072-6694/12/6/1660

Linjama T, Eberhard H-P, Peräsaari J, Müller C, Korhonen M. A European HLA Isolate and Its Implications for hematopoietic stem cell transplant donor procurement. Biol Blood Marrow Trans. 2018;24:587–93.

Article  Google Scholar 

FinnGen R4 Gitbook [Internet]. [cited 2022 Feb 18]. Available from: https://finngen.gitbook.io/documentation/v/r4/

R script for allele frequency calculation [Internet]. [cited 2022 Feb 27]. Available from: https://www.molecularecologist.com/wp-content/uploads/2012/03/Allelefrequency_calculations2.txt

IPD-IMGT/HLA Database [Internet]. [cited 2022 Feb 18]. Available from: https://www.ebi.ac.uk/ipd/imgt/hla/

Haimila K, Perasaari J, Linjama T, Koskela S, Saarinenl T, Lauronen J, et al. HLA antigen, allele and haplotype frequencies and their use in virtual panel reactive antigen calculations in the Finnish population. Tissue Antigens. Clinical Laboratory, Finnish Red Cross Blood Service, Helsinki, Finland. katri.haimila@bts.redcross.fi: John Wiley & Sons A/S; 2013;81:35–43.

R Core Team [Internet]. Available from: https://www.r-project.org/

R studio [Internet]. Available from: https://www.rstudio.com/

Linjama T, Räther C, Ritari J, Peräsaari J, Eberhard H-P, Korhonen M, et al. Extended HLA haplotypes and their impact on DPB1 matching of unrelated hematologic stem cell transplant donors. Biol Blood Marrow Transplant [Internet]. 2019;25:1956–64.

CAS  Article  Google Scholar 

Stanworth SJ, Navarrete C, Estcourt L, Marsh J. Platelet refractoriness - practical approaches and ongoing dilemmas in patient management. Br J Haematol [Internet]. 2015;171:297–305. https://doi.org/10.1111/bjh.13597.

Article  PubMed  Google Scholar 

Karlström C, Linjama T, Edgren G, Lauronen J, Wikman A, Höglund P. HLA-selected platelets for platelet refractory patients with HLA antibodies: a single-center experience. Transfusion [Internet]. 2019;59:945–52. https://doi.org/10.1111/trf.15108.

CAS  Article  PubMed  Google Scholar 

Gleadall NS, Veldhuisen B, Gollub J, Butterworth AS, Ord J, Penkett CJ, et al. Development and validation of a universal blood donor genotyping platform: a multinational prospective study. Blood Adv [Internet]. 2020;4:3495–506.

Article  Google Scholar 

18th [Internet]. [cited 2022 Feb 18]. Available from: https://www.ihiw18.org/component-immunogenetics/creating-fully-representative-mhc-reference-haplotypes/

Kere J. Human population genetics: lessons from Finland. Annu Rev Genomics Hum Genet. Finnish Genome Center, University of Helsinki, Helsinki 00014, Finland. juha.kere@helsinki.fi; 2001;2:103–28.

Norio R. Finnish disease heritage II: population prehistory and genetic roots of Finns. Hum Genet. 2003;112:457–69.

Article  Google Scholar 

Sajantila A, Salem AH, Savolainen P, Bauer K, Gierig C, Paabo S. Paternal and maternal DNA lineages reveal a bottleneck in the founding of the finnish population. Proc Natl Acad Sci [Internet]. 1996;93:12035–9. https://doi.org/10.1073/pnas.93.21.12035.

CAS  Article  Google Scholar 

Kerminen S, Havulinna AS, Hellenthal G, Martin AR, Sarin A-P, Perola M, et al. Fine-scale genetic structure in Finland. G3 Genes|Genomes|Genetics [Internet]. 2017;7:3459–68. Available from: https://academic.oup.com/g3journal/article/7/10/3459/6027487

Siren MK, Sareneva H, Lokki ML, Koskimies S. Unique HLA antigen frequencies in the finnish population. Tissue Antigens. Finnish Bone Marrow Donor Registry, Finnish Red Cross Blood Transfusion Service, Helsinki, Finland.; 1996;48:703–7.

Gragert L, Madbouly A, Freeman J, Maiers M. Six-locus high resolution HLA haplotype frequencies derived from mixed-resolution DNA typing for the entire US donor registry. Hum Immunol [Internet]. 2013;74:1313–20.

CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif