Deeper insight into the role of IL-17 in the relationship beween hypertension and intestinal physiology

Li J, Sun F, Guo Y, Fan H. High-Salt Diet Gets Involved in Gastrointestinal Diseases through the Reshaping of Gastroenterological Milieu. Digestion. 2019;99(4):267–74. https://doi.org/10.1159/000493096.

Article  PubMed  CAS  Google Scholar 

Oparil S, Acelajado MC, Bakris GL, Berlowitz DR, Cifkova R, Dominiczak AF, et al. Hypertension Nature reviews Disease primers. 2018;4:18014. https://doi.org/10.1038/nrdp.2018.14.

Article  PubMed  Google Scholar 

Guyenet PG, Stornetta RL, Souza G, Abbott SBG, Brooks VL. Neuronal Networks in Hypertension: Recent Advances. Hypertension. 2020;76(2):300–11. https://doi.org/10.1161/HYPERTENSIONAHA.120.14521.

Article  PubMed  CAS  Google Scholar 

Hall JE, do Carmo JM, da Silva AA, Wang Z, Hall ME. Obesity, kidney dysfunction and hypertension: mechanistic links. Nature reviews Nephrology. 2019;15(6):367-85. https://doi.org/10.1038/s41581-019-0145-4.

Zhang WQ, Wang YJ, Zhang A, Ding YJ, Zhang XN, Jia QJ, et al. TMA/TMAO in Hypertension: Novel Horizons and Potential Therapies. J Cardiovasc Transl Res. 2021;14(6):1117–24. https://doi.org/10.1007/s12265-021-10115-x.

Article  PubMed  CAS  Google Scholar 

Grylls A, Seidler K, Neil J. Link between microbiota and hypertension: Focus on LPS/TLR4 pathway in endothelial dysfunction and vascular inflammation, and therapeutic implication of probiotics. Biomed Pharmacother. 2021;137: 111334. https://doi.org/10.1016/j.biopha.2021.111334.

Article  PubMed  CAS  Google Scholar 

Dan X, Mushi Z, Baili W, Han L, Enqi W, Huanhu Z, et al. Differential Analysis of Hypertension-Associated Intestinal Microbiota. Int J Med Sci. 2019;16(6):872–81. https://doi.org/10.7150/ijms.29322.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Davis GK, Fehrenbach DJ, Madhur MS. Interleukin 17A: Key Player in the Pathogenesis of Hypertension and a Potential Therapeutic Target. Curr Hypertens Rep. 2021;23(3):13. https://doi.org/10.1007/s11906-021-01128-7.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Basile DP, Abais-Battad JM, Mattson DL. Contribution of Th17 cells to tissue injury in hypertension. Curr Opin Nephrol Hypertens. 2021;30(2):151–8. https://doi.org/10.1097/MNH.0000000000000680.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Krishnamoorthy N, Douda DN, Bruggemann TR, Ricklefs I, Duvall MG, Abdulnour RE et al. Neutrophil cytoplasts induce TH17 differentiation and skew inflammation toward neutrophilia in severe asthma. Sci Immunol. 2018;3(26):eaao4747. https://doi.org/10.1126/sciimmunol.aao4747.

Araos P, Figueroa S, Amador CA. The Role of Neutrophils in Hypertension. Int J Mol Sci. 2020;21(22):8536. https://doi.org/10.3390/ijms21228536.

Cheng M, Ning K. Stereotypes About Enterotype: the Old and New Ideas. Genomics Proteomics Bioinformatics. 2019;17(1):4–12. https://doi.org/10.1016/j.gpb.2018.02.004.

Article  PubMed  PubMed Central  Google Scholar 

Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–80. https://doi.org/10.1038/nature09944.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G, et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5(1):14. https://doi.org/10.1186/s40168-016-0222-x.

Article  PubMed  PubMed Central  Google Scholar 

Shi H, Zhang B, Abo-Hamzy T, Nelson JW, Ambati CSR, Petrosino JF, et al. Restructuring the Gut Microbiota by Intermittent Fasting Lowers Blood Pressure. Circ Res. 2021;128(9):1240–54. https://doi.org/10.1161/CIRCRESAHA.120.318155.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Guo Y, Li X, Wang Z, Yu B. Gut Microbiota Dysbiosis in Human Hypertension: A Systematic Review of Observational Studies. Frontiers in cardiovascular medicine. 2021;8: 650227. https://doi.org/10.3389/fcvm.2021.650227.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Smiljanec K, Lennon SL. Sodium, hypertension, and the gut: does the gut microbiota go salty? Am J Physiol Heart Circ Physiol. 2019;317(6):H1173–82. https://doi.org/10.1152/ajpheart.00312.2019.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wang T, Gao L, Yang Z, Wang F, Guo Y, Wang B, et al. Restraint Stress in Hypertensive Rats Activates the Intestinal Macrophages and Reduces Intestinal Barrier Accompanied by Intestinal Flora Dysbiosis. J Inflamm Res. 2021;14:1085–110. https://doi.org/10.2147/JIR.S294630.

Article  PubMed  PubMed Central  Google Scholar 

Silveira-Nunes G, Durso DF Jr, L, Cunha EHM, Maioli TU, Vieira AT, et al. Hypertension Is Associated With Intestinal Microbiota Dysbiosis and Inflammation in a Brazilian Population. Front Pharmacol. 2020;11:258. https://doi.org/10.3389/fphar.2020.00258.

Article  PubMed  PubMed Central  CAS  Google Scholar 

McGeachy MJ, Cua DJ, Gaffen SL. The IL-17 Family of Cytokines in Health and Disease. Immunity. 2019;50(4):892–906. https://doi.org/10.1016/j.immuni.2019.03.021.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Matzinger P. The danger model: a renewed sense of self. Science. 2002;296(5566):301–5. https://doi.org/10.1126/science.1071059.

Article  PubMed  CAS  Google Scholar 

Bomfim GF, Rodrigues FL, Carneiro FS. Are the innate and adaptive immune systems setting hypertension on fire? Pharmacol Res. 2017;117:377–93. https://doi.org/10.1016/j.phrs.2017.01.010.

Article  PubMed  CAS  Google Scholar 

Santisteban MM, Kim S, Pepine CJ, Raizada MK. Brain-Gut-Bone Marrow Axis: Implications for Hypertension and Related Therapeutics. Circ Res. 2016;118(8):1327–36. https://doi.org/10.1161/CIRCRESAHA.116.307709.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Solak Y, Afsar B, Vaziri ND, Aslan G, Yalcin CE, Covic A, et al. Hypertension as an autoimmune and inflammatory disease. Hypertens Res. 2016;39(8):567–73. https://doi.org/10.1038/hr.2016.35.

Article  PubMed  CAS  Google Scholar 

Pietri P, Vlachopoulos C, Tousoulis D. Inflammation and Arterial Hypertension: From Pathophysiological Links to Risk Prediction. Curr Med Chem. 2015;22(23):2754–61. https://doi.org/10.2174/0929867322666150420104727.

Article  PubMed  CAS  Google Scholar 

Nosalski R, McGinnigle E, Siedlinski M, Guzik TJ. Novel Immune Mechanisms in Hypertension and Cardiovascular Risk. Curr Cardiovasc Risk Rep. 2017;11(4):12. https://doi.org/10.1007/s12170-017-0537-6.

Article  PubMed  PubMed Central  Google Scholar 

Tsounis D, Bouras G, Giannopoulos G, Papadimitriou C, Alexopoulos D, Deftereos S. Inflammation markers in essential hypertension. Med Chem. 2014;10(7):672–81.

Article  CAS  Google Scholar 

Trump S, Lukassen S, Anker MS, Chua RL, Liebig J, Thurmann L, et al. Hypertension delays viral clearance and exacerbates airway hyperinflammation in patients with COVID-19. Nat Biotechnol. 2020. https://doi.org/10.1038/s41587-020-00796-1.

Article  PubMed  Google Scholar 

Yao Z, Fanslow WC, Seldin MF, Rousseau AM, Painter SL, Comeau MR, et al. Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity. 1995;3(6):811–21. https://doi.org/10.1016/1074-7613(95)90070-5.

Article  PubMed  CAS  Google Scholar 

Song X, Qian Y. The activation and regulation of IL-17 receptor mediated signaling. Cytokine. 2013;62(2):175–82. https://doi.org/10.1016/j.cyto.2013.03.014.

Article  PubMed  CAS  Google Scholar 

Gu C, Wu L, Li X. IL-17 family: cytokines, receptors and signaling. Cytokine. 2013;64(2):477–85. https://doi.org/10.1016/j.cyto.2013.07.022.

Article  PubMed  CAS  Google Scholar 

Song X, Gao H, Qian Y. Th17 differentiation and their pro-inflammation function. Adv Exp Med Biol. 2014;841:99–151. https://doi.org/10.1007/978-94-017-9487-9_5.

Article  PubMed  CAS  Google Scholar 

Zhang S. The role of transforming growth factor beta in T helper 17 differentiation. Immunology. 2018;155(1):24–35. https://doi.org/10.1111/imm.12938.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Milovanovic J, Arsenijevic A, Stojanovic B, Kanjevac T, Arsenijevic D, Radosavljevic G, et al. Interleukin-17 in Chronic Inflammatory Neurological Diseases. Front Immunol. 2020;11:947. https://doi.org/10.3389/fimmu.2020.00947.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Laurence A, Tato CM, Davidson TS, Kanno Y, Chen Z, Yao Z, et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity. 2007;26(3):371–81. https://doi.org/10.1016/j.immuni.2007.02.009.

Article  PubMed  CAS  Google Scholar 

Revu S, Wu J, Henkel M, Rittenhouse N, Menk A, Delgoffe GM, et al. IL-23 and IL-1beta Drive Human Th17 Cell Differentiation and Metabolic Reprogramming in Absence of CD28 Costimulation. Cell Rep. 2018;22(10):2642–53. https://doi.org/10.1016/j.celrep.2018.02.044.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kono M, Maeda K, Stocton-Gavanescu I, Pan W, Umeda M, Katsuyama E et al. Pyruvate kinase M2 is requisite for Th1 and Th17 differentiation. JCI insight. 2019;4(12):e127395. https://doi.org/10.1172/jci.insight.127395.

Hu B, Elinav E, Huber S, Strowig T, Hao L, Hafemann A, et al. Microbiota-induced

留言 (0)

沒有登入
gif