Enhanced biological activity of Curcumin Cinnamates: an experimental and computational analysis

Santhakumar AB, Battino M, Alvarez-Suarez JM. Dietary polyphenols: structures, bioavailability and protective effects against atherosclerosis. Food Chem Toxicol. 2018;113:49–65.

CAS  PubMed  Article  Google Scholar 

Luca SV, Macovei I, Bujor A, Miron A, Skalicka-Wozniak K, Aprotosoaie AC, et al. Bioactivity of dietary polyphenols: the role of metabolites. Crit Rev Food Sci Nutr. 2020;60:626–59.

CAS  PubMed  Article  Google Scholar 

Hunyadi A. The mechanism(s) of action of antioxidants: From scavenging reactive oxygen/nitrogen species to redox signalling and the generation of bioactive secondary metabolites. Med Res Rev. 2019;39:2505–33.

CAS  PubMed  Article  Google Scholar 

Serreli G, Deiana M. In vivo formed metabolites of polyphenols and their biological efficacy. Food Funct. 2019;10:6999–7021.

CAS  PubMed  Article  Google Scholar 

Lacroix S, Badoux JK, Scott-Boyer MP, Parolo S, Matone A, Priami C, et al. A computationally driven analysis of the polyphenol-protein interactome. Sci Rep. 2018;8:2232.

PubMed  PubMed Central  Article  Google Scholar 

Chen J, Yang J, Ma L, Li J, Shahzad N, Kim CK. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Sci Rep. 2020;10:2611.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Sun YM, Zhang HY, Chen DZ, Liu CB. Theoretical elucidation on the antioxidant mechanism of curcumin: a DFT study. Org Lett. 2002;4:2909–11.

CAS  PubMed  Article  Google Scholar 

Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA. The essential medicinal chemistry of Curcumin. J Med Chem. 2017;60:1620–37.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Gera M, Sharma N, Ghosh M, Huynh DL, Lee SJ, Min T, et al. Nanoformulation of curcumin: an emerging paradigm for improved remedial application. Oncotarget. 2017;8:66680–98.

PubMed  PubMed Central  Article  Google Scholar 

Sarkar N, Bose S. Liposome-encapsulated curcumin-loaded 3D printed scaffold for bone tissue engineering. ACS Appl Mater Interfaces. 2019;11:17184–92.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Khayyal MT, El-Hazek RM, El-Sabbagh WA, Frank J, Behnam D, Abdel-Tawab M. Micellar solubilisation enhances the antiinflammatory activities of curcumin and boswellic acids in rats with adjuvant-induced arthritis. Nutrition 2018;54:189–96.

CAS  PubMed  Article  Google Scholar 

Alven S, Nqoro X, Aderibigbe BA. Polymer-based materials loaded with curcumin for wound healing applications. Polymers 2020;12:2286.

CAS  PubMed Central  Article  Google Scholar 

Misra S, Narain U, Misra R, Misra K. Design, development and synthesis of mixed bioconjugates of piperic acid-glycine, curcumin-glycine/alanine and curcumin-glycine piperic acid and their antibacterial and antifungal properties. Bioorg Med Chem. 2005;13:1477.

PubMed  Article  Google Scholar 

Pavarthy KS, Negi PS, Srinivas P. Antioxidant, antimutagenic, and antibacterial activities of curcumin-β-diglucoside. Food Chem. 2009;111:265.

Google Scholar 

Dubey SK, Sharma AK, Narain U, Misra K, Pati U. Design, synthesis and characterization of some bioactive conjugates of curcumin glycine, glutamic acid, valine, and demethylated piperic acid and study their antimicrobial and antiproferative properties. Eur J Med Chem. 2008;43:1837.

CAS  PubMed  Article  Google Scholar 

Rashmi HB, Negi PS. Phenolic acids from vegetables: a review on processing stability and health benefits. Food Res Int. 2020;136:109298.

CAS  PubMed  Article  Google Scholar 

Maurya DK, Devasagayam TPA. Antioxidant and prooxidant nature of hydroxycinnamic acid derivatives ferulic and caffeic acids. Food Chem Toxicol. 2010;48:3369–73.

CAS  PubMed  Article  Google Scholar 

Conman V, Vodnar DC. Hydroxycinnamic acids and human health: recent advances. J Sci Food Agric. 2020;100:483–99.

Article  Google Scholar 

Sova M, Saso L. Natural sources, pharmacokinetics, biological activities and health benefits of hydroxycinnamic acids and their metabolites. Nutrients 2020;12:2190.

CAS  PubMed Central  Article  Google Scholar 

Pan MH, Lai CS, Ho CT. Anti-inflammatory activity of natural dietary flavonoids. Food Funct. 2010;1:15–31.

CAS  PubMed  Article  Google Scholar 

Chu C, Artis D, Chiu IM. Neuro-immune interactions in the tissues. Immunity 2020;52:464–74.

CAS  PubMed  Article  Google Scholar 

Chuang YC, Chang HM, Li CY, Cui Y, Lee CL, Chen CS. Reactive oxygen species and inflammatory responses of macrophages to substrates with physiological stiffness. ACS Appl Mater Interfaces. 2020;12:48432–41.

CAS  PubMed  Article  Google Scholar 

Maleki SJ, Crespo JF, Cabanilas B. Anti-inflammatory effects of flavonoids. Food Chem. 2019;299:125124.

CAS  PubMed  Article  Google Scholar 

Hameister R, Kaur C, Dheen ST, Lohmann CH, Singh G. Reactive oxygen/nitrogen species (ROS/RNS) and oxidative stress in arthroplasty. J Biomed Mater Res B. 2020;108:2073–87.

CAS  Article  Google Scholar 

Raghuvanshi DS, Verma N, Singh S, Luqman S, Gupta AC, Bawankule DU, et al. Design and synthesis of novel oleanolic acid based chromenes as anti-proliferative and anti-inflammatory agents. N J Chem. 2018;42:16782–94.

CAS  Article  Google Scholar 

Wang J, Sun H, Li Y, Chu H, Sun J. Synthesis and preliminary anti-inflammatory activity exploration of novel derivatives of kirenol. N J Chem. 2020;44:19250–61.

CAS  Article  Google Scholar 

Bindu S, Mazumder S, Bandopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: a current perspective. Biochem Pharmacol. 2020;180:114147.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ambati GG, Jachack SM. Natural product inhibitors of cyclooxygenase (COX) enzyme: A review on current status and future perspectives. Curr Med Chem. 2021;28:1877–905.

CAS  PubMed  Article  Google Scholar 

Rouzer CA, Marnett LJ. Structural and chemical biology of the cyclooxygenase with substrates and non-steroidal anti-inflammatory drugs. Chem Rev. 2020;120:7592–641.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Singla P, Luxami V, Paul K. Synthesis and in vitro evaluation of novel triazine analogues as anticancer agents and their interaction studies with bovine serum albumin. Eur J Med Chem. 2016;117:59–69.

CAS  PubMed  Article  Google Scholar 

Parolia S, Maley J, Sammynaiken R, Green R, Nickerson M, Ghosh S. Structure-functionality of lentil protein-polyphenol conjugates. Food Chem. 2022;367:130603.

CAS  PubMed  Article  Google Scholar 

Apak R, Güçlü K, Özyürek M, Çelik SE. Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay. Michrochim Acta. 2008;160:413.

CAS  Article  Google Scholar 

Qureshi MA, Javed S. Afaltoxin B1 induced structural and conformational changes in bovine serum albumin: A multispectroscopic and circular dichorism-based study. ACS Omega. 2021;6:18054–64.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Pawar SK, Jaldappagari S. Interaction of repaglinide with bovine serum albumin: spectroscopic and molecular docking approaches. J Pharm Anal. 2019;9:274–83.

PubMed  PubMed Central  Article  Google Scholar 

Anand K, Rajamanikandan R, Selva Sharma A, Ilanchelian M, Khan FI, Tiloke C, et al. Human serum albumin interaction, in silico and anticancer evaluation of pine-gold nanoparticles. Process Biochem. 2020;89:98–109.

CAS  Article  Google Scholar 

Siddiqui S, Ameen F, Kausar T, Nayeem SM, Ur Rehman S, Tabish M. Biophysical insight into the binding mechanism of doxofylline to bovine serum albumin: An in vitro and in silico approach. Spectrochim Acta Part A 2021;249:119296.

CAS  Article  Google Scholar 

Phopin K, Ruankham W, Prachayasittikul S, Prachayasittikul V, Tantimongcolwat T. Insight into the molecular interaction of cloxyquin (5-Chloro-8-Hydroxyquinoline) with bovine serum albumin: biophysical analysis and computational simulation. Int J Mol Sci. 2020;21:249.

CAS  Article  Google Scholar 

Satish L, Millan S, Bera K, Mohapatra S, Sahoo H. A spectroscopic and molecular dynamic simulation approach towards the stabilizing effect of ammonium based ionic liquids on bovine serum albumin. N J Chem. 2017;41:10712–22.

CAS  Article  Google Scholar 

Gadallah MI, Ali HRH, Askal HF, Saleh GA. Towards understanding the interaction of certain carbapenems with protein via combined experimental and theoretical approach. Spectrochim Acta Part A. 2021;246:119005.

CAS  Article 

留言 (0)

沒有登入
gif