Antenatal Programming of Hypertension: Paradigms, Paradoxes, and How We Move Forward

Arima H, Barzi F, Chalmers J. Mortality patterns in hypertension. J Hypertens. 2011;29:S3-7. https://doi.org/10.1097/01.hjh.0000410246.59221.b1.

CAS  Article  PubMed  Google Scholar 

Yang L, Magnussen CG, Yang L, Bovet P, Xi B. Elevated blood pressure in childhood or adolescence and cardiovascular outcomes in adulthood: a systematic review. Hypertension. 2020;75(4):948–55. https://doi.org/10.1161/hypertensionaha.119.14168.

CAS  Article  PubMed  Google Scholar 

•• Yang L, Sun J, Zhao M, Liang Y, Bovet P, Xi B. Elevated blood pressure in childhood and hypertension risk in adulthood: a systematic review and meta-analysis. J Hypertens. 2020;38(12). Important study that provided strong evidence linking high blood pressure in childhood with adult hypertension and demonstrating the importance of early intervention.

• Song P, Zhang Y, Yu J, Zha M, Zhu Y, Rahimi K, et al. Global prevalence of hypertension in children: a systematic review and meta-analysis. JAMA Pediatr. 2019;173(12):1–10. https://doi.org/10.1001/jamapediatrics.2019.3310. Crucial paper highlighting the global burden of hypertension in youth.

Falkner B, Lurbe E. Primary hypertension beginning in childhood and risk for future cardiovascular disease. J Pediatr. 2021. https://doi.org/10.1016/j.jpeds.2021.08.008.

Article  PubMed  Google Scholar 

Liu J, Bu X, Wei L, Wang X, Lai L, Dong C, et al. Global burden of cardiovascular diseases attributable to hypertension in young adults from 1990 to 2019. J Hypertens. 2021;39(12):2488–96. https://doi.org/10.1097/hjh.0000000000002958.

CAS  Article  PubMed  Google Scholar 

• Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth ME. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. Br Med J. 1989;298(6673):564–7. https://doi.org/10.1136/bmj.298.6673.564. Seminal epidemiological study that was one of the first to demonstrate that lower birth weight was associated with higher systolic blood pressure at age 10 years and 36 years.

Langford HG, Watson RL. Prepregnant blood pressure, hypertension during pregnancy, and later blood pressure of mothers and offspring. Hypertension. 1980;2(4 Pt 2):130–3.

CAS  Article  Google Scholar 

Nathanielsz PW. Animal models that elucidate basic principles of the developmental origins of adult diseases. ILAR J. 2006;47(1):73–82. https://doi.org/10.1093/ilar.47.1.73.

CAS  Article  PubMed  Google Scholar 

Barker DJ. The origins of the developmental origins theory. J Intern Med. 2007;261(5):412–7. https://doi.org/10.1111/j.1365-2796.2007.01809.x.

CAS  Article  PubMed  Google Scholar 

Nuyt AM, Alexander BT. Developmental programming and hypertension. Curr Opin Nephrol Hypertens. 2009;18(2).

South AM. Antenatal Programming of Blood Pressure. In: Flynn JT, Ingelfinger JR, Brady TM, editors. Pediatric Hypertension. 5th ed. Cham: Springer; 2022.

Google Scholar 

Goff DC, Buxton DB, Pearson GD, Wei GS, Gosselin TE, Addou EA, et al. Implementing the National Heart, Lung, and Blood Institute’s Strategic Vision in the Division of Cardiovascular Sciences. Circ Res. 2019;124(4):491–7. https://doi.org/10.1161/CIRCRESAHA.118.314338.

CAS  Article  PubMed  PubMed Central  Google Scholar 

•• Falkner B, Lurbe E. Primordial prevention of high blood pressure in childhood: an opportunity not to be missed. Hypertension 2020;75(5):1142–50. https://doi.org/10.1161/HYPERTENSIONAHA.119.14059. Well written overview of the risk factors for hypertension in childhood and the importance of primordial prevention.

Chen W, Srinivasan SR, Berenson GS. Amplification of the association between birthweight and blood pressure with age: the Bogalusa Heart Study. J Hypertens. 2010;28(10):2046–52. https://doi.org/10.1097/HJH.0b013e32833cd31f.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Huxley RR, Shiell AW, Law CM. The role of size at birth and postnatal catch-up growth in determining systolic blood pressure: a systematic review of the literature. J Hypertens. 2000;18(7):815–31. https://doi.org/10.1097/00004872-200018070-00002.

CAS  Article  PubMed  Google Scholar 

Nilsson PM, Östergren P-O, Nyberg P, Söderström M, Allebeck P. Low birth weight is associated with elevated systolic blood pressure in adolescence: a prospective study of a birth cohort of 149 378 Swedish boys. J Hypertens. 1997;15(12).

Lai C, Hu Y, He D, Liang L, Xiong F, Liu G, et al. U-shaped relationship between birth weight and childhood blood pressure in China. BMC Pediatr. 2019;19(1):264. https://doi.org/10.1186/s12887-019-1638-9.

Article  PubMed  PubMed Central  Google Scholar 

Chen W, Srinivasan SR, Yao L, Li S, Dasmahapatra P, Fernandez C, et al. Low birth weight is associated with higher blood pressure variability from childhood to young adulthood: the Bogalusa Heart Study. Am J Epidemiol. 2012;176 Suppl 7(Suppl 7):S99-105. https://doi.org/10.1093/aje/kws298.

Article  PubMed  Google Scholar 

Dior UP, Karavani G, Bursztyn M, Paltiel O, Calderon-Margalit R, Friedlander Y, et al. Birth weight and maternal body size as determinants of blood pressure at age 17: results from the Jerusalem Perinatal Study Cohort. Matern Child Health J. 2021;25(1):162–71. https://doi.org/10.1007/s10995-020-03096-x.

Article  PubMed  Google Scholar 

• de Jong F, Monuteaux MC, van Elburg RM, Gillman MW, Belfort MB. Systematic review and meta-analysis of preterm birth and later systolic blood pressure. Hypertension. 2012;59(2):226–34. https://doi.org/10.1161/hypertensionaha.111.181784. Important systematic review and meta-analysis synthesizing the available data on the association between preterm birth and systolic blood pressure.

South AM, Nixon PA, Chappell MC, Diz DI, Russell GB, Jensen ET, et al. Renal function and blood pressure are altered in adolescents born preterm. Pediatr Nephrol. 2019;34(1):137–44. https://doi.org/10.1007/s00467-018-4050-z.

Article  PubMed  Google Scholar 

Skudder-Hill L, Ahlsson F, Lundgren M, Cutfield WS, Derraik JGB. Preterm birth is associated with increased blood pressure in young adult women. J Am Heart Assoc. 2019;8(12):e012274. https://doi.org/10.1161/JAHA.119.012274.

Article  PubMed  PubMed Central  Google Scholar 

Haikerwal A, Doyle LW, Cheung MM, Wark JD, Opie G, Roberts G, et al. High blood pressure in young adult survivors born extremely preterm or extremely low birthweight in the post surfactant era. Hypertension. 2020;75(1):211–7. https://doi.org/10.1161/HYPERTENSIONAHA.119.13780.

CAS  Article  PubMed  Google Scholar 

• Juonala M, Cheung MMH, Sabin MA, Burgner D, Skilton MR, Kähönen M, et al. Effect of birth weight on life-course blood pressure levels among children born premature: the Cardiovascular Risk in Young Finns Study. J Hypertens. 2015;33(8):1542–8. https://doi.org/10.1097/hjh.0000000000000612. Important epidemiological study in a well-defined longitudinal cohort demonstrating the importance of fetal growth restriction in hypertension programming.

• Mohamed A, Marciniak M, Williamson W, Huckstep OJ, Lapidaire W, McCance A, et al. Association of systolic blood pressure elevation with disproportionate left ventricular remodeling in very preterm-born young adults: the Preterm Heart and Elevated Blood Pressure. JAMA Cardiol. 2021. https://doi.org/10.1001/jamacardio.2021.0961. Important study demonstrating an additional mechanism, higher burden of left ventricular remodeling, by which preterm birth may influence future cardiovascular disease risk through blood pressure programming.

Cohen JB, D’Agostino McGowan L, Jensen ET, Rigdon J, South AM. Evaluating sources of bias in observational studies of angiotensin-converting enzyme inhibitor/angiotensin II receptor blocker use during COVID-19: beyond confounding. J Hypertens. 2021;39(4):795–805. https://doi.org/10.1097/HJH.0000000000002706.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Howards PP. Invited commentary: identifying the improbable, the value of incremental insights. Am J Epidemiol. 2014;179(1):12–4. https://doi.org/10.1093/aje/kwt231.

Article  PubMed  Google Scholar 

Gordijn SJ, Beune IM, Thilaganathan B, Papageorghiou A, Baschat AA, Baker PN, et al. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol. 2016;48(3):333–9. https://doi.org/10.1002/uog.15884.

CAS  Article  PubMed  Google Scholar 

Beune IM, Bloomfield FH, Ganzevoort W, Embleton ND, Rozance PJ, van Wassenaer-Leemhuis AG, et al. Consensus based definition of growth restriction in the newborn. J Pediatr. 2018;196:71-6.e1. https://doi.org/10.1016/j.jpeds.2017.12.059.

Article  PubMed  Google Scholar 

Anderson MS, Hay WW. Intrauterine growth restriction and the small-for-gestational age infant. In: Avery GB, Fletcher MA, MacDonald MG, editors. Neonatology Pathophysiology and Management of the Newborn. 5th ed. Philadelphia: Lippincott Williams and Wilkins; 1999. p. 411.

Google Scholar 

Cole SR, Platt RW, Schisterman EF, Chu H, Westreich D, Richardson D, et al. Illustrating bias due to conditioning on a collider. Int J Epidemiol. 2010;39(2):417–20. https://doi.org/10.1093/ije/dyp334.

Article  PubMed  Google Scholar 

Westreich D, Greenland S. The Table 2 Fallacy: presenting and interpreting confounder and modifier coefficients. Am J Epidemiol. 2013;177(4):292–8. https://doi.org/10.1093/aje/kws412.

Article  PubMed  PubMed Central  Google Scholar 

Kaijser M, Bonamy Anna-Karin E, Akre O, Cnattingius S, Granath F, Norman M, et al. Perinatal risk factors for ischemic heart disease: disentangling the roles of birth weight and preterm birth. Circulation. 2008;117(3):405–10. https://doi.org/10.1161/CIRCULATIONAHA.107.710715.

Article  PubMed  Google Scholar 

Liew G, Wang JJ, Mitchell P. Which is the better marker for susceptibility to disease later in life–low birthweight or prematurity? Arch Dis Child. 2008;93(5):450. https://doi.org/10.1136/adc.2008.138263.

CAS  Article  PubMed  Google Scholar 

Lucas A, Fewtrell MS, Cole TJ. Fetal origins of adult disease-the hypothesis revisited. Br Med J. 1999;319(7204):245–9. https://doi.org/10.1136/bmj.319.7204.245.

CAS  Article  Google Scholar 

Lawlor DA, Leon DA, Rasmussen F. Growth trajectory matters: interpreting the associations among birth weight, concurrent body size, and systolic blood pressure in a cohort study of 378,707 Swedish men. Am J Epidemiol. 2007;165(12):1405–12. https://doi.org/10.1093/aje/kwm028.

Article  PubMed  Google Scholar 

Tu YK, Gilthorpe MS, Ellison GT. What is the effect of adjusting for more than one measure of current body size on the relation between birthweight and blood pressure? J Hum Hypertens. 2006;20(9):646–57. https://doi.org/10.1038/sj.jhh.1002044.

Article  PubMed  Google Scholar 

•• Chiolero A, Kaufman JS, Paradis G. Why adjustment for current weight can bias the estimate of the effect of birth weight on blood pressure: shedding light using causal graphs. J Hypertens. 2012;30(5):1042–5. https://doi.org/10.1097/HJH.0b013e3283526663. Important epidemiological and statistical methods paper emphasizing sources of bias in the field when inappropriately adjusting for current weight.

Yun M, Wang X, Fan L, Yan Y, Bazzano L, He J, et al. Age-related suppression effect of current body weight on the association between birthweight and blood pressure: The Bogalusa Heart Study. Pediatr Obes. 2021;16(3):e12716. https://doi.org/10.1111/ijpo.12716.

Article  PubMed  Google Scholar 

Sobel ME. Asymptotic confidence intervals for indirect effects in structural equation models. Sociol Methodol. 1982;13:290–312. https://doi.org/10.2307/270723.

Article  Google Scholar 

Mann KD, Pearce MS, Sayers SM, Singh GR. Pathways between birth weight and later body size in predicting blood pressure: Australian Aboriginal Cohort Study 1987–2007. J Hypertens. 2015;33(5):933–9. https://doi.org/10.1097/hjh.0000000000000514.

CAS  Article  PubMed  Google Scholar 

South AM, Nixon PA, Chappell MC, Diz DI, Russell GB, Snively BM, et al. Antenatal corticosteroids and the renin-angiotensin-aldosterone system in adolescents born preterm. Pediatr Res. 2017;81(1–1):88–93. https://doi.org/10.1038/pr.2016.179.

CAS  Article  PubMed  Google Scholar 

Tu YK, Gunnell D, Gilthorpe MS. Simpson’s paradox, Lord’s paradox, and suppression effects are the same phenomenon–the reversal paradox. Emerg Themes Epidemiol. 2008;5:2. https://doi.org/10.1186/1742-7622-5-2.

Article  PubMed  PubMed Central  Google Scholar 

Arah OA. The role of causal reasoning in understanding Simpson’s paradox, Lord’s paradox, and the suppression effect: covariate selection in the analysis of observational studies. Emerg T

留言 (0)

沒有登入
gif