Cellular Senescence in Obesity and Associated Complications: a New Therapeutic Target

Cheng L, Wang J, Dai H, Duan Y, An Y, Shi L, et al. Brown and beige adipose tissue: a novel therapeutic strategy for obesity and type 2 diabetes mellitus. Adipocyte. 2021;10(1):48–65. https://doi.org/10.1080/21623945.2020.1870060.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Cheryl D. Fryar MDC, and Cynthia L. Ogden. Prevalence of overweight, obesity, and severe obesity among adults aged 20 and over: United States, 1960–1962 through 2017–2018. NCHS Health E-Stats. 2020.

Kelly T, Yang W, Chen CS, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes (Lond). 2008;32(9):1431–7. https://doi.org/10.1038/ijo.2008.102.

CAS  Article  Google Scholar 

Kawai T, Autieri MV, Scalia R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol Cell Physiol. 2021;320(3):C375–91. https://doi.org/10.1152/ajpcell.00379.2020.

CAS  Article  PubMed  Google Scholar 

Roberto CA, Swinburn B, Hawkes C, Huang TT, Costa SA, Ashe M, et al. Patchy progress on obesity prevention: emerging examples, entrenched barriers, and new thinking. Lancet. 2015;385(9985):2400–9. https://doi.org/10.1016/s0140-6736(14)61744-x.

Article  PubMed  Google Scholar 

Santos AL, Sinha S. Obesity and aging: molecular mechanisms and therapeutic approaches. Ageing Res Rev. 2021;67:101268. https://doi.org/10.1016/j.arr.2021.101268.

CAS  Article  PubMed  Google Scholar 

Burton DGA, Faragher RGA. Obesity and type-2 diabetes as inducers of premature cellular senescence and ageing. Biogerontology. 2018;19(6):447–59. https://doi.org/10.1007/s10522-018-9763-7.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lin L, Qin K, Chen D, Lu C, Chen W, Guo VY. Systematic review and meta-analysis of the association between paediatric obesity and telomere length. Acta Paediatr. 2021;110(10):2695–703. https://doi.org/10.1111/apa.15971.

Article  PubMed  Google Scholar 

Al-Attas OS, Al-Daghri N, Bamakhramah A, Shaun Sabico S, McTernan P, Huang TT. Telomere length in relation to insulin resistance, inflammation and obesity among Arab youth. Acta Paediatr. 2010;99(6):896–9. https://doi.org/10.1111/j.1651-2227.2010.01720.x.

CAS  Article  PubMed  Google Scholar 

Clemente DBP, Maitre L, Bustamante M, Chatzi L, Roumeliotaki T, Fossati S, et al. Obesity is associated with shorter telomeres in 8 year-old children. Sci Rep. 2019;9(1):18739. https://doi.org/10.1038/s41598-019-55283-8.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lamprokostopoulou A, Moschonis G, Manios Y, Critselis E, Nicolaides NC, Stefa A, et al. Childhood obesity and leucocyte telomere length. Eur J Clin Invest. 2019;49(12):e13178. https://doi.org/10.1111/eci.13178.

CAS  Article  PubMed  Google Scholar 

Licea-Cejudo RC, Arenas-Sandoval LK, Salazar-León J, Martínez-Martínez MV, Carreón-Rodríguez A, Pedraza-Alva G, et al. A dysfunctional family environment and a high body fat percentage negatively affect telomere length in Mexican boys aged 8–10 years. Acta Paediatr. 2020;109(10):2091–8. https://doi.org/10.1111/apa.15234.

CAS  Article  PubMed  Google Scholar 

Welendorf C, Nicoletti CF, Pinhel MAS, Noronha NY, de Paula BMF, Nonino CB. Obesity, weight loss, and influence on telomere length: new insights for personalized nutrition. Nutrition. 2019;66:115–21. https://doi.org/10.1016/j.nut.2019.05.002.

CAS  Article  PubMed  Google Scholar 

García-Calzón S, Moleres A, Marcos A, Campoy C, Moreno LA, Azcona-Sanjulián MC, et al. Telomere length as a biomarker for adiposity changes after a multidisciplinary intervention in overweight/obese adolescents: the EVASYON study. PLoS One. 2014;9(2):e89828. https://doi.org/10.1371/journal.pone.0089828.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Lee M, Martin H, Firpo MA, Demerath EW. Inverse association between adiposity and telomere length: the fels longitudinal study. Am J Hum Biol. 2011;23(1):100–6. https://doi.org/10.1002/ajhb.21109.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Rode L, Nordestgaard BG, Weischer M, Bojesen SE. Increased body mass index, elevated C-reactive protein, and short telomere length. J Clin Endocrinol Metab. 2014;99(9):E1671–5. https://doi.org/10.1210/jc.2014-1161.

CAS  Article  PubMed  Google Scholar 

Palmer AK, Jensen MD, Tchkonia T, Kirkland JL. Chapter 11 - Senescence in obesity: causes and consequences. In: Serrano M, Muñoz-Espín D, editors. Cellular senescence in disease. Academic Press; 2022. p. 289–308.

Chapter  Google Scholar 

d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, Fiegler H, Carr P, Von Zglinicki T, et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature. 2003;426(6963):194–8. https://doi.org/10.1038/nature02118.

CAS  Article  PubMed  Google Scholar 

Beauséjour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P, et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. Embo j. 2003;22(16):4212–22. https://doi.org/10.1093/emboj/cdg417.

Article  PubMed  PubMed Central  Google Scholar 

d’Adda di Fagagna F. Living on a break: cellular senescence as a DNA-damage response. Nat Rev Cancer. 2008;8(7):512–22. https://doi.org/10.1038/nrc2440.

CAS  Article  PubMed  Google Scholar 

Coppé JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99–118. https://doi.org/10.1146/annurev-pathol-121808-102144.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ, et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell. 2008;133(6):1019–31. https://doi.org/10.1016/j.cell.2008.03.039.

CAS  Article  PubMed  Google Scholar 

Acosta JC, O’Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S, et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell. 2008;133(6):1006–18. https://doi.org/10.1016/j.cell.2008.03.038.

CAS  Article  PubMed  Google Scholar 

Kang C, Xu Q, Martin TD, Li MZ, Demaria M, Aron L, et al. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science. 2015;349(6255):aaa5612. https://doi.org/10.1126/science.aaa5612.

Toso A, Revandkar A, Di Mitri D, Guccini I, Proietti M, Sarti M, et al. Enhancing chemotherapy efficacy in Pten-deficient prostate tumors by activating the senescence-associated antitumor immunity. Cell Rep. 2014;9(1):75–89. https://doi.org/10.1016/j.celrep.2014.08.044.

CAS  Article  PubMed  Google Scholar 

Herranz N, Gallage S, Mellone M, Wuestefeld T, Klotz S, Hanley CJ, et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat Cell Biol. 2015;17(9):1205–17. https://doi.org/10.1038/ncb3225.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Tasdemir N, Banito A, Roe JS, Alonso-Curbelo D, Camiolo M, Tschaharganeh DF, et al. BRD4 connects enhancer remodeling to senescence immune surveillance. Cancer Discov. 2016;6(6):612–29. https://doi.org/10.1158/2159-8290.Cd-16-0217.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Hoare M, Ito Y, Kang TW, Weekes MP, Matheson NJ, Patten DA, et al. NOTCH1 mediates a switch between two distinct secretomes during senescence. Nat Cell Biol. 2016;18(9):979–92. https://doi.org/10.1038/ncb3397.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Aird KM, Iwasaki O, Kossenkov AV, Tanizawa H, Fatkhutdinov N, Bitler BG, et al. HMGB2 orchestrates the chromatin landscape of senescence-associated secretory phenotype gene loci. J Cell Biol. 2016;215(3):325–34. https://doi.org/10.1083/jcb.201608026.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Davalos AR, Kawahara M, Malhotra GK, Schaum N, Huang J, Ved U, et al. p53-dependent release of alarmin HMGB1 is a central mediator of senescent phenotypes. J Cell Biol. 2013;201(4):613–29. https://doi.org/10.1083/jcb.201206006.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zhang L, Pitcher LE, Prahalad V, Niedernhofer LJ, Robbins PD. Targeting cellular senescence with senotherapeutics: senolytics and senomorphics. Febs j. 2022. https://doi.org/10.1111/febs.16350.

Article  PubMed  Google Scholar 

James EL, Michalek RD, Pitiyage GN, de Castro AM, Vignola KS, Jones J, et al. Senescent human fibroblasts show increased glycolysis and redox homeostasis with extracellular metabolomes that overlap with those of irreparable DNA damage, aging, and disease. J Proteome Res. 2015;14(4):1854–71. https://doi.org/10.1021/pr501221g.

CAS  Article  PubMed  Google Scholar 

Xiao B, Sanders MJ, Underwood E, Heath R, Mayer FV, Carmena D, et al. Structure of mammalian AMPK and its regulation by ADP. Nature. 2011;472(7342):230–3. https://doi.org/10.1038/nature09932.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Zu Y, Liu L, Lee MY, Xu C, Liang Y, Man RY, et al. SIRT1 promotes proliferation and prevents senescence through targeting LKB1 in primary porcine aortic endothelial cells. Circ Res. 2010;106(8):1384–93. https://doi.org/10.1161/circresaha.109.215483.

CAS  Article  PubMed  Google Scholar 

Le Pelletier L, Mantecon M, Gorwood J, Auclair M, Foresti R, Motterlini R, et al. Metformin alleviates stress-induced cellular senescence of aging human adipose stromal cells and the ensuing adipocyte dysfunction. Elife. 2021;10. https://doi.org/10.7554/eLife.62635.

Pollard AE, Martins L, Muckett PJ, Khadayate S, Bornot A, Clausen M, et al. AMPK activation protects against diet induced obesity through Ucp1-independent thermogenesis in subcutaneous white adipose tissue. Nat Metab. 2019;1(3):340–9. https://doi.org/10.1038/s42255-019-0036-9.

CAS  Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif