Quantitative imaging of magnetic nanoparticles in an unshielded environment using a large AC susceptibility array

Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys. 2003;36(13):R167–81.

Article  Google Scholar 

Richter H, Kettering M, Wiekhorst F, Steinhoff U, Hilger I, Trahms L. Magnetorelaxometry for localization and quantification of magnetic nanoparticles for thermal ablation studies. Phys Med Biol. 2010;55(3):623–33.

Article  Google Scholar 

Vangijzegem T, Stanicki D, Laurent S. Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Expert Opin Drug Deliv. 2019;16(1):69–78.

Article  Google Scholar 

Liebl M, Wiekhorst F, Eberbeck D, Radon P, Gutkelch D, Baumgarten D, et al. Magnetorelaxometry procedures for quantitative imaging and characterization of magnetic nanoparticles in biomedical applications. Biomedizinische Technik Biomedical engineering. 2015;60(5):427–43.

Article  Google Scholar 

Zheng B, von See MP, Yu E, Gunel B, Lu K, Vazin T, et al. Quantitative Magnetic Particle Imaging Monitors the Transplantation, Biodistribution, and Clearance of Stem Cells In Vivo. Theranostics. 2016;6(3):291–301.

Article  Google Scholar 

Liebl M, Steinhoff U, Wiekhorst F, Haueisen J, Trahms L. Quantitative imaging of magnetic nanoparticles by magnetorelaxometry with multiple excitation coils. Phys Med Biol. 2014;59(21):6607–20.

Article  Google Scholar 

Schier P, Liebl M, Steinhoff U, Handler M, Wiekhorst F, Baumgarten D. Optimizing Excitation Coil Currents for Advanced Magnetorelaxometry Imaging. J Math Imaging Vis. 2020;62(2):238–52.

MathSciNet  MATH  Article  Google Scholar 

Paysen H, Wells J, Kosch O, Steinhoff U, Franke J, Trahms L, et al. Improved sensitivity and limit-of-detection using a receive-only coil in magnetic particle imaging. Phys Med Biol. 2018;63(13):13NT02.

Article  Google Scholar 

Kosch O, Paysen H, Wells J, Ptach F, Franke J, Wöckel L, et al. Evaluation of a separate-receive coil by magnetic particle imaging of a solid phantom. J Magn Magn Mater. 2019;471:444–9.

Article  Google Scholar 

Ficko BW, Nadar PM, Hoopes PJ, Diamond SG. Development of a magnetic nanoparticle susceptibility magnitude imaging array. Phys Med Biol. 2014;59(4):1047–71.

Article  Google Scholar 

Baffa O, Oliveira RB, Miranda JR, Troncon LE. Analysis and development of AC biosusceptometer for orocaecal transit time measurements. Med Biol Eng Compu. 1995;33(3):353–7.

Article  Google Scholar 

Quini CC, Prospero AG, Calabresi MFF, Moretto GM, Zufelato N, Krishnan S, et al. Real-time liver uptake and biodistribution of magnetic nanoparticles determined by AC biosusceptometry. Nanomedicine. 2017;13(4):1519–29.

Article  Google Scholar 

Prospero AG, Quini CC, Bakuzis AF, Fidelis-de-Oliveira P, Moretto GM, Mello FP, et al. Real-time in vivo monitoring of magnetic nanoparticles in the bloodstream by AC biosusceptometry. J Nanobiotechnology. 2017;15(1):22.

Article  Google Scholar 

Prospero AG, Fidelis-de-Oliveira P, Soares GA, Miranda MF, Pinto LA, Dos Santos DC, et al. AC biosusceptometry and magnetic nanoparticles to assess doxorubicin-induced kidney injury in rats. Nanomedicine (Lond). 2020;15(5):511–25.

Article  Google Scholar 

Quini CC, Próspero AG, Kondiles BR, Chaboub L, Hogan MK, Baffa O, et al. Development of a protocol to assess cell internalization and tissue uptake of magnetic nanoparticles by AC Biosusceptometry. J Magn Magn Mater. 2019;473:527–33.

Article  Google Scholar 

Americo MF, Marques RG, Zandona EA, Andreis U, Stelzer M, Cora LA, et al. Validation of ACB in vitro and in vivo as a biomagnetic method for measuring stomach contraction. Neurogastroenterol Motil. 2010;22(12):1340–4 (e374).

Article  Google Scholar 

Americo MF, Oliveira RB, Cora LA, Marques RG, Romeiro FG, Andreis U, et al. The ACB technique: a biomagentic tool for monitoring gastrointestinal contraction directly from smooth muscle in dogs. Physiol Meas. 2010;31(2):159–69.

Article  Google Scholar 

Andreis U, Americo MF, Cora LA, Oliveira RB, Baffa O, Miranda JRA. Gastric motility evaluated by electrogastrography and alternating current biosusceptometry in dogs. Physiol Meas. 2008;29(9):1023–31.

Article  Google Scholar 

Corá LA, Américo MF, Romeiro FG, Oliveira RB, Miranda JRA. Pharmaceutical applications of AC Biosusceptometry. Eur J Pharm Biopharm. 2010;74(1):67–77.

Article  Google Scholar 

Prospero AG, Fidelis-de-Oliveira P, Soares GA, Miranda MF, Pinto LA, Dos Santos DC, et al. AC biosusceptometry and magnetic nanoparticles to assess doxorubicin-induced kidney injury in rats. Nanomedicine. 2020;15(05):511–25.

Article  Google Scholar 

Próspero AG, Soares GA, Moretto GM, Quini CC, Bakuzis AF, de Arruda Miranda JR. Dynamic cerebral perfusion parameters and magnetic nanoparticle accumulation assessed by AC biosusceptometry. Biomed Eng Biomedizinische Technik. 2020;65(3):343–51.

Article  Google Scholar 

Soares G, Próspero A, Calabresi M, Rodrigues D, Simoes L, Quini C, et al. Multichannel AC Biosusceptometry system to map biodistribution and assess the pharmacokinetic profile of magnetic nanoparticles by imaging. IEEE transactions on nanobioscience. 2019.

Próspero AG, Quini CC, Bakuzis AF, Fidelis-de-Oliveira P, Moretto GM, Mello FP, et al. Real-time in vivo monitoring of magnetic nanoparticles in the bloodstream by AC biosusceptometry. J Nanobiotechnol. 2017;15(1):1–12.

Article  Google Scholar 

Biasotti GGda, Próspero AG, Alvarez MDT, Liebl M, Pinto LA, Soares GA, et al. 2D Quantitative Imaging of Magnetic Nanoparticles by an AC Biosusceptometry Based Scanning Approach and Inverse Problem. Sensors. 2021;21(21):7063.

Article  Google Scholar 

Baumgarten D, Liehr M, Wiekhorst F, Steinhoff U, Münster P, Miethe P, et al. Magnetic nanoparticle imaging by means of minimum norm estimates from remanence measurements. Med Biol Eng Compu. 2008;46(12):1177–85.

Article  Google Scholar 

Crevecoeur G, Baumgarten D, Steinhoff U, Haueisen J, Trahms L, Dupre L. Advancements in Magnetic Nanoparticle Reconstruction Using Sequential Activation of Excitation Coil Arrays Using Magnetorelaxometry. IEEE Trans Magn. 2012;48(4):1313–6.

Article  Google Scholar 

Jaufenthaler A, Schier P, Middelmann T, Liebl M, Wiekhorst F, Baumgarten D. Quantitative 2D Magnetorelaxometry Imaging of Magnetic Nanoparticles Using Optically Pumped Magnetometers. Sensors. 2020;20(3):753.

Soares GA, Faria JVC, Pinto LA, Prospero AG, Pereira GM, Stoppa EG. Long-Term Clearance and Biodistribution of Magnetic Nanoparticles Assessed by AC Biosusceptometry. 2022;15(6):2121.

Singh N, Jenkins GJ, Asadi R, Doak SH. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano reviews. 2010;1(1):5358.

Article  Google Scholar 

Yildirimer L, Thanh NTK, Loizidou M, Seifalian AM. Toxicology and clinical potential of nanoparticles. Nano Today. 2011;6(6):585–607.

Article  Google Scholar 

Föcke J, Baumgarten D, Burger MJIP. The inverse problem of magnetorelaxometry imaging. Inverse Problems. 2018;34(11):115008.

Lin C-W, Liao S-H, Huang H-S, Wang L-M, Chen J-H, Su C-H, et al. Improvement of multisource localization of magnetic particles in an animal. Sci Rep. 2021;11(1):9628.

Article  Google Scholar 

Weizenecker J, Gleich B, Rahmer J, Dahnke H, Borgert J. Three-dimensional real-time in vivo magnetic particle imaging. Phys Med Biol. 2009;54(5):L1–10.

Article  Google Scholar 

Pinto L, Soares G, Próspero A, Stoppa E, Biasotti G, Paixão F, et al. An easy and low-cost biomagnetic methodology to study regional gastrointestinal transit in rats. Biomedizinische Technik Biomed Eng. 2021;66(4):405–12.

Article  Google Scholar 

Corá L, Andreis U, Romeiro FG, Américo M, Oliveira R, Baffa O, et al. Magnetic images of the disintegration process of tablets in the human stomach by ac biosusceptometry. Phys Med Biol. 2005;50(23):5523.

Cora LA, Americo MF, Oliveira RB, Baffa O, Moraes R, Romeiro FG, et al. Disintegration of magnetic tablets in human stomach evaluated by alternate current biosusceptometry. Eur J Pharm Biopharm. 2003;56(3):413–20.

Article  Google Scholar 

Pinto LA, Corá LA, Rodrigues GS, Prospero AG, Soares GA, de Andreis U, et al. Pharmacomagnetography to evaluate the performance of magnetic enteric-coated tablets in the human gastrointestinal tract. Eur J Pharm Biopharm. 2021;161:50–5.

Article  Google Scholar 

Soares GA, Pires DW, Pinto LA, Rodrigues GS, Prospero AG, Biasotti GGA, et al. The Influence of Omeprazole on the Dissolution Processes of pH-Dependent Magnetic Tablets Assessed by Pharmacomagnetography. Pharmaceutics. 2021;13(8):1274.

Article  Google Scholar 

Calabresi M, Quini C, Matos J, Moretto G, Americo M, Graça J, et al. Alternate current biosusceptometry for the assessment of gastric motility after proximal gastrectomy in rats: a feasibility study. Neurogastroenterol Motil. 2015;27(11):1613–20.

Article  Google Scholar 

Calabresi MFF, Tanimoto A, Próspero AG, Mello FPF, Soares G, Di Stasi LC, et al. Changes in colonic contractility in response to inflammatory bowel disease: Long-term assessment in a model of TNBS-induced inflammation in rats. Life Sci. 2019;236:116833.

Article  Google Scholar 

Quini CC, Americo MF, Cora LA, Calabresi MF, Alvarez M, Oliveira RB, et al. Employment of a noninvasive magnetic method for evaluation of gastrointestinal transit in rats. J Biol Eng. 2012;6(1):6.

Article  Google Scholar 

Matos JF, Americo MF, Sinzato YK, Volpato GT, Corá LA, Calabresi MFF, et al. Role of sex hormones in gastrointestinal motility in pregnant and non-pregnant rats. World J Gastroenterol. 2016;22(25):5761.

Article  Google Scholar 

Marques RG, Americo MF, Spadella CT, Corá LA, Oliveira RB, Miranda JRA. Different patterns between mechanical and electrical activities: an approach to investigate gastric motility in a model of long-term diabetic rats. Physiol Meas. 2013;35(1):69.

Article  Google Scholar 

留言 (0)

沒有登入
gif