Serum concentrations of ketones increase after hand-ergometer exercise in persons with cervical spinal cord injuries: a preliminary prospective study

Yekutiel M, Brooks ME, Ohry A, Yarom J, Carel R. The prevalence of hypertension, ischaemic heart disease and diabetes in traumatic spinal cord injured patients and amputees. Paraplegia. 1989;27:58–62.

CAS  PubMed  Google Scholar 

Office of Sports Promotion for the Disabled, Health and Sports Division, Japan Sports Agency. Report on "Project for the Promotion of Sports for Persons with Disabilities in Local Communities (Survey and Research on the Promotion of Sports Participation by Persons with Disabilities). Sasakawa Sports Foundation, Tokyo, 2018. (In Japanese).

Guttmann L, Silver J, Wyndham CH. Thermoregulation in spinal man. J Physiol. 1958;142:406–19.

CAS  Article  Google Scholar 

Kjaer M, Dela F, Sørensen FB, Secher NH, Bangsbo J, Mohr T, et al. Fatty acid kinetics and carbohydrate metabolism during electrical exercise in spinal cord-injured humans. Am J Physiol Regul Integr Comp Physiol. 2001;281:R1492–8.

CAS  Article  Google Scholar 

Burnham R, Martin T, Stein R, Bell G, MacLean I, Steadward R. Skeletal muscle fibre type transformation following spinal cord injury. Spinal Cord. 1997;35:86–91.

CAS  Article  Google Scholar 

Gilbert O, Croffoot JR, Taylor AJ, Nash M, Schomer K, Groah S. Serum lipid concentrations among persons with spinal cord injury - a systematic review and meta-analysis of the literature. Atherosclerosis. 2014;232:305–12.

CAS  Article  Google Scholar 

Puchalska P, Crawford PA. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab. 2017;25:262–84.

CAS  Article  Google Scholar 

Lasko-McCarthey P, Davis JA. Protocol dependency of VO2max during arm cycle ergometry in males with quadriplegia. Med Sci Sports Exerc. 1991;23:1097–101.

CAS  Article  Google Scholar 

Sato C, Kamijo YI, Sakurai Y, Araki S, Sakata Y, Ishigame A, et al. Three-week exercise and protein intake immediately after exercise increases the 6-min walking distance with simultaneously improved plasma volume in patients with chronic cerebrovascular disease: a preliminary prospective study. BMC Sports Sci Med Rehabil. 2022;14:38.

Article  Google Scholar 

Kamijo Y, Takeno Y, Sakai A, Inaki M, Okumoto T, Itoh J, et al. Plasma lactate concentration and muscle blood flow during dynamic exercise with negative-pressure breathing. J Appl Physiol. 2000;89:2196–205.

CAS  Article  Google Scholar 

Kouda K, Furusawa K, Sugiyama H, Sumiya T, Ito T, Tajima F, et al. Does 20-min arm crank ergometer exercise increase plasma interleukin-6 in individuals with cervical spinal cord injury? Eur J Appl Physiol. 2012;112:597–604.

Article  Google Scholar 

Han I, Mukaimoto T, Ueda H, Kiyota H, Ohno M. Effects of intermittent bouts of aerobic exercise on oxygen consumption during and after exercise. NSSU J Sport Sci. 2012;1:1–7.

Google Scholar 

Martin Ginis KA, van der Scheer JW, Latimer-Cheung AE, Barrow A, Bourne C, Carruthers P, et al. Evidence-based scientific exercise guidelines for adults with spinal cord injury: an update and a new guideline. Spinal Cord. 2018;56:308–21.

Article  Google Scholar 

Karvonen MJ, Kentala E, Mustala O. The effects of training on heart rate: a longitudinal study. Ann Med Exp Biol Fenn. 1957;35:307–15.

CAS  PubMed  Google Scholar 

Nishiyama K, Kamijo YI, van der Scheer JW, Kinoshita T, Goosey-Tolfrey VL, Hoekstra SP, et al. Lipid metabolism after mild cold stress in persons with a cervical spinal cord injury. Spinal Cord. 2022. https://doi.org/10.1038/s41393-022-00788-9.

Zimmermann G, Bolter LM, Sluka R, Höller Y, Bathke AC, Thomschewski A, et al. Sample sizes and statistical methods in interventional studies on individuals with spinal cord injury: a systematic review. J Evid Based Med. 2019;12:200–8.

Article  Google Scholar 

Ranallo RF, Rhodes EC. Lipid metabolism during exercise. Sports Med. 1998;26:29–42.

CAS  Article  Google Scholar 

Kimber NE, Heigenhauser GJF, Spriet LL, Dyck DJ. Skeletal muscle fat and carbohydrate metabolism during recovery from glycogen-depleting exercise in humans. J Physiol. 2003;548:919–27.

CAS  Article  Google Scholar 

Gorgey AS, Dudley GA. Skeletal muscle atrophy and increased intramuscular fat after incomplete spinal cord injury. Spinal Cord. 2007;45:304–9.

CAS  Article  Google Scholar 

Elder CP, Apple DF, Bickel CS, Meyer RA, Dudley GA. Intramuscular fat and glucose tolerance after spinal cord injury –a cross-sectional study. Spinal Cord. 2004;42:711–6.

CAS  Article  Google Scholar 

Shah PK, Stevens JE, Gregory CM, Pathare NC, Jayaraman A, Bickel SC, et al. Lower-extremity muscle cross-sectional area after incomplete spinal cord injury. Arch Phys Med Rehabil. 2006;87:772–8.

Article  Google Scholar 

Grabacka M, Pierzchalska M, Dean M, Reiss K. Regulation of ketone body metabolism and the role of PPARα. Int J Mol Sci. 2016;17:2093.

Article  Google Scholar 

Bauman WA, Adkins RH, Spungen AM, Waters RL. The effect of residual neurological deficit on oral glucose tolerance in persons with chronic spinal cord injury. Spinal Cord. 1999;37:765–71.

CAS  Article  Google Scholar 

Karlsson AK. Insulin resistance and sympathetic function in high spinal cord injury. Spinal Cord. 1999;37:494–500.

CAS  Article  Google Scholar 

Bluvshtein V, Korczyn AD, Pinhas I, Vered Y, Gelernter I, Catz A. Insulin resistance in tetraplegia but not in mid-thoracic paraplegia: is the mid-thoracic spinal cord involved in glucose regulation? Spinal Cord. 2011;49:648–52.

CAS  Article  Google Scholar 

Rodwell VW, Bender DA, Botham KM, et al. Overview of metabolism & the provision of metabolic fuels. In: Harper’s illustrated biochemistry. New York: McGraw-Hill Medical; 2015. p. 139–51.

Dionyssiotis Y. Malnutrition in spinal cord injury: more than nutritional deficiency. J Clin Med Res. 2012;4:227–36.

CAS  PubMed  PubMed Central  Google Scholar 

Macdonald IA, Bennett T, Fellows IW. Catecholamines and the control of metabolism in man. Clin Sci. 1985;68:613–9.

CAS  Article  Google Scholar 

Arner P, Kriegholm E, Engfeldt P, Bolinder J. Adrenergic regulation of lipolysis in situ at rest and during exercise. J Clin Investig. 1990;85:893–8.

CAS  Article  Google Scholar 

Palmisano BT, Zhu L, Eckel RH, Stafford JM. Sex differences in lipid and lipoprotein metabolism. Mol Metab. 2018;15:45–55.

CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif