Physicochemical aspects of the tumour microenvironment as drivers of vasculogenic mimicry

Paget, S. (1889). The distribution of secondary growths in cancer of the breast. The Lancet, 133(3421), 571–573. https://doi.org/10.1016/S0140-6736(00)49915-0

Article  Google Scholar 

Albini, A., & Sporn, M. B. (2007). The tumour microenvironment as a target for chemoprevention. Nature Reviews Cancer, 7(2), 139–147. https://doi.org/10.1038/nrc2067

CAS  Article  PubMed  Google Scholar 

Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013

CAS  Article  PubMed  Google Scholar 

Andreucci, E., Peppicelli, S., Carta, F., Brisotto, G., Biscontin, E., Ruzzolini, J., & Calorini, L. (2017). Carbonic anhydrase IX inhibition affects viability of cancer cells adapted to extracellular acidosis. Journal of Molecular Medicine (Berlin, Germany), 95(12), 1341–1353. https://doi.org/10.1007/s00109-017-1590-9

CAS  Article  Google Scholar 

Vaupel, P. (2004). Tumor microenvironmental physiology and its implications for radiation oncology. Seminars in Radiation Oncology, 14(3), 198–206. https://doi.org/10.1016/j.semradonc.2004.04.008

Article  PubMed  Google Scholar 

Hashim, A. I., Zhang, X., Wojtkowiak, J. W., Martinez, G. V., & Gillies, R. J. (2011). Imaging pH and metastasis. NMR in Biomedicine, 24(6), 582–591. https://doi.org/10.1002/nbm.1644

Article  PubMed  PubMed Central  Google Scholar 

Morita, T. (1995). Low pH leads to sister-chromatid exchanges and chromosomal aberrations, and its clastogenicity is S-dependent. Mutation Research/Environmental Mutagenesis and Related Subjects, 334(3), 301–308. https://doi.org/10.1016/0165-1161(95)90067-5

CAS  Article  Google Scholar 

Tang, M., Bolderson, E., O’Byrne, K. J., & Richard, D. J. (2021). Tumor hypoxia drives genomic instability. Frontiers in Cell and Developmental Biology, 9, 626229. https://doi.org/10.3389/fcell.2021.626229

Article  PubMed  PubMed Central  Google Scholar 

Erler, J. T., Cawthorne, C. J., Williams, K. J., Koritzinsky, M., Wouters, B. G., Wilson, C., & Dive, C. (2004). Hypoxia-mediated down-regulation of Bid and Bax in tumors occurs via hypoxia-inducible factor 1-dependent and -independent mechanisms and contributes to drug resistance. Molecular and Cellular Biology, 24(7), 2875–2889. https://doi.org/10.1128/MCB.24.7.2875-2889.2004

CAS  Article  PubMed  PubMed Central  Google Scholar 

Peppicelli, S., Bianchini, F., Torre, E., & Calorini, L. (2014). Contribution of acidic melanoma cells undergoing epithelial-to-mesenchymal transition to aggressiveness of non-acidic melanoma cells. Clinical & Experimental Metastasis, 31(4), 423–433. https://doi.org/10.1007/s10585-014-9637-6

CAS  Article  Google Scholar 

Hill, R. P., Marie-Egyptienne, D. T., & Hedley, D. W. (2009). Cancer stem cells, hypoxia and metastasis. Seminars in Radiation Oncology, 19(2), 106–111. https://doi.org/10.1016/j.semradonc.2008.12.002

Article  PubMed  Google Scholar 

Boedtkjer, E., & Pedersen, S. F. (2020). The acidic tumor microenvironment as a driver of cancer. Annual Review of Physiology, 82(1), 103–126. https://doi.org/10.1146/annurev-physiol-021119-034627

CAS  Article  PubMed  Google Scholar 

Mohyeldin, A., Garzón-Muvdi, T., & Quiñones-Hinojosa, A. (2010). Oxygen in stem cell biology: A critical component of the stem cell niche. Cell Stem Cell, 7(2), 150–161. https://doi.org/10.1016/j.stem.2010.07.007

CAS  Article  PubMed  Google Scholar 

Andreucci, E., Peppicelli, S., Ruzzolini, J., Bianchini, F., Biagioni, A., Papucci, L., & Calorini, L. (2020). The acidic tumor microenvironment drives a stem-like phenotype in melanoma cells. Journal of Molecular Medicine, 98(10), 1431–1446. https://doi.org/10.1007/s00109-020-01959-y

CAS  Article  PubMed  Google Scholar 

Zhang, T., Suo, C., Zheng, C., & Zhang, H. (2019). Hypoxia and metabolism in metastasis. In D. M. Gilkes (Ed.), Hypoxia and cancer metastasis, 1136, 87–95. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-12734-3_6

LaMonte, G., Tang, X., Chen, J.L.-Y., Wu, J., Ding, C.-K.C., Keenan, M. M., & Chi, J.-T. (2013). Acidosis induces reprogramming of cellular metabolism to mitigate oxidative stress. Cancer & Metabolism, 1(1), 23. https://doi.org/10.1186/2049-3002-1-23

Article  Google Scholar 

Hernández de la Cruz, O. N., López-González, J. S., García-Vázquez, R., Salinas-Vera, Y. M., Muñiz-Lino, M. A., Aguilar-Cazares, D., & Carlos-Reyes, Á. (2019). Regulation networks driving vasculogenic mimicry in solid tumors. Frontiers in Oncology, 9, 1419. https://doi.org/10.3389/fonc.2019.01419

Article  PubMed  Google Scholar 

Krishna Priya, S., Nagare, R. P., Sneha, V. S., Sidhanth, C., Bindhya, S., Manasa, P., & Ganesan, T. S. (2016). Tumour angiogenesis–origin of blood vessels: Tumour angiogenesis. International Journal of Cancer, 139(4), 729–735. https://doi.org/10.1002/ijc.30067

CAS  Article  PubMed  Google Scholar 

Peri, S., Biagioni, A., Versienti, G., Andreucci, E., Staderini, F., Barbato, G., & Magnelli, L. (2021). Enhanced vasculogenic capacity induced by 5-fluorouracil chemoresistance in a gastric cancer cell line. International Journal of Molecular Sciences, 22(14), 7698. https://doi.org/10.3390/ijms22147698

CAS  Article  PubMed  PubMed Central  Google Scholar 

Maniotis, A. J., Folberg, R., Hess, A., Seftor, E. A., Gardner, L. M. G., Pe’er, J., & Hendrix, M. J. C. (1999). Vascular channel formation by human melanoma cells in vivo and in vitro: Vasculogenic mimicry. The American Journal of Pathology, 155(3), 739–752. https://doi.org/10.1016/S0002-9440(10)65173-5

CAS  Article  PubMed  PubMed Central  Google Scholar 

Maniotis, A. J., Folberg, R., Hess, A., Seftor, E. A., Gardner, L. M., Pe’er, J., & Hendrix, M. J. C. (1999). Vascular channel formation by human melanoma cells in vivo and in vitro: Vasculogenic mimicry. The American Journal of Pathology, 155(3), 739–752. https://doi.org/10.1016/S0002-9440(10)65173-5

CAS  Article  PubMed  PubMed Central  Google Scholar 

Schnegg, C. I., Yang, M. H., Ghosh, S. K., & Hsu, M.-Y. (2015). Induction of vasculogenic mimicry overrides VEGF-A silencing and enriches stem-like cancer cells in melanoma. Cancer Research, 75(8), 1682–1690. https://doi.org/10.1158/0008-5472.CAN-14-1855

CAS  Article  PubMed  PubMed Central  Google Scholar 

He, W., Yang, G., Liu, S., Maghsoudloo, M., Shasaltaneh, M. D., Kaboli, P. J., & Wen, Q. (2021). Comparative mRNA/micro-RNA co-expression network drives melanomagenesis by promoting epithelial–mesenchymal transition and vasculogenic mimicry signaling. Translational Oncology, 14(12), 101237. https://doi.org/10.1016/j.tranon.2021.101237

CAS  Article  PubMed  PubMed Central  Google Scholar 

Mei, X., Chen, Y.-S., Zhang, Q.-P., Chen, F.-R., Xi, S.-Y., Long, Y.-K., & Chen, Z.-P. (2020). Association between glioblastoma cell-derived vessels and poor prognosis of the patients. Cancer Communications (London, England), 40(5), 211–221. https://doi.org/10.1002/cac2.12026

Article  Google Scholar 

Pagano, C., Navarra, G., Pastorino, O., Avilia, G., Coppola, L., Della Monica, R., & Laezza, C. (2021). N6-Isopentenyladenosine hinders the vasculogenic mimicry in human glioblastoma cells through Src-120 catenin pathway modulation and RhoA activity inhibition. International Journal of Molecular Sciences, 22(19), 10530. https://doi.org/10.3390/ijms221910530

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ren, K., Yao, N., Wang, G., Tian, L., Ma, J., Shi, X., & Sun, X. (2014). Vasculogenic mimicry: A new prognostic sign of human osteosarcoma. Human Pathology, 45(10), 2120–2129. https://doi.org/10.1016/j.humpath.2014.06.013

Article  PubMed  Google Scholar 

Ren, K., Ni, Y., Li, X., Wang, C., Chang, Q., Li, Y., & Zhou, J. (2019). Expression profiling of long noncoding RNAs associated with vasculogenic mimicry in osteosarcoma. Journal of Cellular Biochemistry, 120(8), 12473–12488. https://doi.org/10.1002/jcb.28514

CAS  Article  PubMed  Google Scholar 

Chu, Z., Shi, X., Chen, G., He, X., Qian, Y., Wang, H., & Chen, J. (2021). COE inhibits vasculogenic mimicry by targeting EphA2 in hepatocellular carcinoma, a research based on proteomics analysis. Frontiers in Pharmacology, 12, 619732. https://doi.org/10.3389/fphar.2021.619732

CAS  Article  PubMed  PubMed Central  Google Scholar 

Li, X., Sun, B., Zhao, X., An, J., Zhang, Y., Gu, Q., & Liu, F. (2020). Function of BMP4 in the formation of vasculogenic mimicry in hepatocellular carcinoma. Journal of Cancer, 11(9), 2560–2571. https://doi.org/10.7150/jca.40558

CAS  Article  PubMed  PubMed Central  Google Scholar 

Andonegui-Elguera, M. A., Alfaro-Mora, Y., Cáceres-Gutiérrez, R., Caro-Sánchez, C. H. S., Herrera, L. A., & Díaz-Chávez, J. (2020). An overview of vasculogenic mimicry in breast cancer. Frontiers in Oncology, 10, 220. https://doi.org/10.3389/fonc.2020.00220

Article  PubMed  PubMed Central  Google Scholar 

Shirakawa, K., Wakasugi, H., Heike, Y., Watanabe, I., Yamada, S., Saito, K., & Konishi, F. (2002). Vasculogenic mimicry and pseudo-comedo formation in breast cancer. International Journal of Cancer, 99(6), 821–828. https://doi.org/10.1002/ijc.10423

CAS  Article  PubMed  Google Scholar 

Xia, Y., Cai, X.-Y., Fan, J.-Q., Zhang, L.-L., Ren, J.-H., Li, Z.-Y., & Wu, G. (2019). The role of sema4D in vasculogenic mimicry formation in non-small cell lung cancer and the underlying mechanisms: Role of sema4D in vasculogenic mimicry formation. International Journal of Cancer, 144(9), 2227–2238. https://doi.org/10.1002/ijc.31958

CAS  Article  PubMed  Google Scholar 

Niu, K., Chen, X.-W., Qin, Y., Zhang, L.-P., Liao, R.-X., & Sun, J.-G. (2021). Celecoxib blocks vasculogenic mimicry via an off-target effect to radiosensitize lung cancer cells: An experimental study. Frontiers in Oncology, 11, 697227. https://doi.org/10.3389/fonc.2021.697227

Article  PubMed  PubMed Central  Google Scholar 

Kim, H. S., Won, Y. J., Shim, J. H., Kim, H. J., Kim, J., Hong, H. N., & Kim, B. S. (2019). Morphological characteristics of vasculogenic mimicry and its correlation with EphA2 expression in gastric adenocarcinoma. Scientific Reports, 9(1), 3414. https://doi.org/10.1038/s41598-019-40265-7

CAS  Article  PubMed  PubMed Central  Google Scholar 

Song, X., An, Y., Chen, D., Zhang, W., Wu, X., Li, C., & Cao, H. (2021). Microbial metabolite deoxycholic acid promotes vasculogenic mimicry formation in intestinal carcinogenesis. Cancer Science. https://doi.org/10.1111/cas.15208

留言 (0)

沒有登入
gif