Risk factors for femoral-to-radial artery pressure gradient after weaning from cardiopulmonary bypass: a historical cohort study

Brzezinski M, Luisetti T, London MJ. Radial artery cannulation: a comprehensive review of recent anatomic and physiologic investigations. Anesth Analg 2009; 109: 1763–81. https://doi.org/10.1213/ane.0b013e3181bbd416

Article  PubMed  Google Scholar 

Pauca AL, Hudspeth AS, Wallenhaupt SL, et al. Radial artery-to-aorta pressure difference after discontinuation of cardiopulmonary bypass. Anesthesiology 1989; 70: 935–41. https://doi.org/10.1097/00000542-198906000-00009

CAS  Article  PubMed  Google Scholar 

Stern DH, Gerson JI, Allen FB, Parker FB. Can we trust the direct radial artery pressure immediately following cardiopulmonary bypass? Anesthesiology 1985; 62: 557–61. https://doi.org/10.1097/00000542-198505000-00002

CAS  Article  PubMed  Google Scholar 

Gravlee GP, Wong AB, Adkins TG, Case LD, Pauca AL. A comparison of radial, brachial, and aortic pressures after cardiopulmonary bypass. J Cardiothorac Anesth 1989; 3: 20–6. https://doi.org/10.1016/0888-6296(89)90006-9

CAS  Article  PubMed  Google Scholar 

Maruyama K, Horiguchi R, Hashimoto H, et al. Effect of combined infusion of nitroglycerin and nicardipine on femoral-to-radial arterial pressure gradient after cardiopulmonary bypass. Anesth Analg 1990; 70: 428–32. https://doi.org/10.1213/00000539-199004000-00015

CAS  Article  PubMed  Google Scholar 

De Hert SG, Vermeyen KM, Moens MM, Hoffmann VL, Bataillie KJ. Central-to-peripheral arterial pressure gradient during cardiopulmonary bypass: relation to pre- and intra-operative data and effects of vasoactive agents. Acta Anaesthesiol Scand 1994; 38: 479–85. https://doi.org/10.1111/j.1399-6576.1994.tb03933.x

Article  PubMed  Google Scholar 

Dorman T, Breslow MJ, Lipsett PA, et al. Radial artery pressure monitoring underestimates central arterial pressure during vasopressor therapy in critically ill surgical patients. Crit Care Med 1998; 26: 1646–9. https://doi.org/10.1097/00003246-199810000-00014

CAS  Article  PubMed  Google Scholar 

Kanazawa M, Fukuyama H, Kinefuchi Y, Takiguchi M, Suzuki T. Relationship between aortic-to-radial arterial pressure gradient after cardiopulmonary bypass and changes in arterial elasticity. Anesthesiology 2003; 99: 48–53. https://doi.org/10.1097/00000542-200307000-00011

Article  PubMed  Google Scholar 

Manecke GR Jr, Parimucha M, Stratmann G, et al. Deep hypothermic circulatory arrest and the femoral-to-radial arterial pressure gradient. J Cardiothorac Vasc Anesth 2004; 18: 175–9. https://doi.org/10.1053/j.jvca.2004.01.023

Article  PubMed  Google Scholar 

Fuda G, Denault A, Deschamps A, et al. risk factors involved in central-to-radial arterial pressure gradient during cardiac surgery. Anesth Analg 2016; 122: 624–32. https://doi.org/10.1213/ane.0000000000001096

CAS  Article  PubMed  Google Scholar 

Bouchard-Dechêne V, Couture P, Su A, et al. Risk factors for radial-to-femoral artery pressure gradient in patients undergoing cardiac surgery with cardiopulmonary bypass. J Cardiothorac Vasc Anesth 2018; 32: 692–8. https://doi.org/10.1053/j.jvca.2017.09.020

Article  PubMed  Google Scholar 

Baba T, Goto T, Yoshitake A, Shibata Y. Radial artery diameter decreases with increased femoral to radial arterial pressure gradient during cardiopulmonary bypass. Anesth Analg 1997; 85: 252–8. https://doi.org/10.1097/00000539-199708000-00003

CAS  Article  PubMed  Google Scholar 

Bouchard-Dechêne V, Kontar L, Couture P, et al. Radial-to-femoral pressure gradient quantification in cardiac surgery. JTCVS Open 2021; 8: 446–60. https://doi.org/10.1016/j.xjon.2021.07.031

Article  PubMed  PubMed Central  Google Scholar 

Sun J, Ding ZN, Qian YN, Peng YG. Central-radial artery pressure gradient after cardiopulmonary bypass is associated with cardiac function and may affect therapeutic direction. PloS One 2013; 8: e68890. https://doi.org/10.1371/journal.pone.0068890

CAS  Article  PubMed  PubMed Central  Google Scholar 

Gravlee GP, Brauer SD, O’Rourke MF, Avolio AP. A comparison of brachial, femoral, and aortic intra-arterial pressures before and after cardiopulmonary bypass. Anaesth Intensive Care 1989; 17: 305–11. https://doi.org/10.1177/0310057x8901700311

CAS  Article  PubMed  Google Scholar 

Chauhan S, Saxena N, Mehrotra S, Rao BH, Sahu M. Femoral artery pressures are more reliable than radial artery pressures on initiation of cardiopulmonary bypass. J Cardiothorac Vasc Anesth 2000; 14: 274–6.

CAS  Article  Google Scholar 

Singh S, Nelson N, Acosta I, Check FE, Puri VK. Catheter colonization and bacteremia with pulmonary and arterial catheters. Crit Care Med 1982; 10: 736–9. https://doi.org/10.1097/00003246-198211000-00007

CAS  Article  PubMed  Google Scholar 

Thomas F, Burke JP, Parker J, et al. The risk of infection related to radial vs femoral sites for arterial catheterization. Crit Care Med 1983; 11: 807–12. https://doi.org/10.1097/00003246-198310000-00009

CAS  Article  PubMed  Google Scholar 

Lorente L, Santacreu R, Martín MM, Jiménez A, Mora ML. Arterial catheter-related infection of 2,949 catheters. Crit Care 2006; 10: R83. https://doi.org/10.1186/cc4930

Article  PubMed  PubMed Central  Google Scholar 

Haddad F, Zeeni C, El Rassi I, et al. Can femoral artery pressure monitoring be used routinely in cardiac surgery? J Cardiothorac Vasc Anesth 2008; 22: 418–22. https://doi.org/10.1053/j.jvca.2007.10.010

Article  PubMed  Google Scholar 

Fleming K, Redfern RE, March RL, et al. TEG-directed transfusion in complex cardiac surgery: impact on blood product usage. J Extra Corpor Technol 2017; 49: 283–90.

PubMed  PubMed Central  Google Scholar 

O’Grady NP, Alexander M, Dellinger EP, et al. Guidelines for the prevention of intravascular catheter-related infections. Centers for Disease Control and Prevention. MMWR Recomm Rep 2002; 51: 1–29.

Reves JG, Karp RB, Buttner EE, et al. Neuronal and adrenomedullary catecholamine release in response to cardiopulmonary bypass in man. Circulation 1982; 66: 49–55. https://doi.org/10.1161/01.cir.66.1.49

CAS  Article  PubMed  Google Scholar 

Nakayama R, Goto T, Kukita I, Sakata R. Sustained effects of plasma norepinephrine levels on femoral-radial pressure gradient after cardiopulmonary bypass. J Anesth 1993; 7: 8–16. https://doi.org/10.1007/s0054030070008

CAS  Article  PubMed  Google Scholar 

van Son JA, Smedts F, Vincent JG, van Lier HJ, Kubat K. Comparative anatomic studies of various arterial conduits for myocardial revascularization. J Thorac Cardiovasc Surg 1990; 99: 703–7.

Article  Google Scholar 

Rich GF, Lubanski RE Jr, McLoughlin TM. Differences between aortic and radial artery pressure associated with cardiopulmonary bypass. Anesthesiology 1992; 77: 63–6. https://doi.org/10.1097/00000542-199207000-00009

CAS  Article  PubMed  Google Scholar 

Urzua J. Vasodilator-induced femoral-to-radial pressure gradient after cardiopulmonary bypass. Anesth Analg 1990; 71: 710–1. https://doi.org/10.1213/00000539-199012000-00028

CAS  Article  PubMed  Google Scholar 

Drexler H, Hayoz D, Munzel T, Just H, Zelis R, Brunner HR. Endothelial function in congestive heart failure. Am Heart J 1993; 126: 761–4. https://doi.org/10.1016/0002-8703(93)90926-Z

CAS  Article  PubMed  Google Scholar 

Joannides R, Bizet-Nafeh C, Costentin A, et al. Chronic ACE inhibition enhances the endothelial control of arterial mechanics and flow-dependent vasodilatation in heart failure. Hypertension 2001; 38: 1446–50. https://doi.org/10.1161/hy1201.096529

CAS  Article  PubMed  Google Scholar 

Vercauteren M, Remy E, Devaux C, et al. Improvement of peripheral endothelial dysfunction by protein tyrosine phosphatase inhibitors in heart failure. Circulation 2006; 114: 2498–507. https://doi.org/10.1161/circulationaha.106.630129

CAS  Article  PubMed  Google Scholar 

Furfaro S, Gauthier M, Lacroix J, Nadeau D, Lafleur L, Mathews S. Arterial catheter-related infections in children. A 1-year cohort analysis. Am J Dis Child 1991; 145: 1037–43. https://doi.org/10.1001/archpedi.1991.02160090089031

Raad I, Umphrey J, Khan A, Truett LJ, Bodey GP. The duration of placement as a predictor of peripheral and pulmonary arterial catheter infections. J Hosp Infect 1993; 23: 17–26. https://doi.org/10.1016/0195-6701(93)90126-k

CAS  Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif