Proteomic analysis implicates that postovulatory aging leads to aberrant gene expression, biosynthesis, RNA metabolism and cell cycle in mouse oocytes

Miao YL, Kikuchi K, Sun QY, Schatten H. Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility. Hum Reprod Update. 2009;15(5):573–85.

PubMed  Article  Google Scholar 

Jia B-Y, Xiang D-C, Shao Q-Y, Zhang B, Liu S-N, Hong Q-H, et al. Inhibitory effects of astaxanthin on postovulatory porcine oocyte aging in vitro. Sci Rep. 2020;10(1):20217.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Fissore RA, Kurokawa M, Knott J, Zhang M, Smyth J. Mechanisms underlying oocyte activation and postovulatory ageing. Reproduction. 2002;124(6):745–54.

CAS  PubMed  Article  Google Scholar 

Wilcox AJ, Weinberg CR, Baird DD. Post-ovulatory ageing of the human oocyte and embryo failure. Hum Reprod. 1998;13(2):394–7.

CAS  PubMed  Article  Google Scholar 

Lord T, Aitken RJ. Oxidative stress and ageing of the post-ovulatory oocyte. Reprod (Cambridge England). 2013;146(6):R217-R27.

Article  Google Scholar 

Di Nisio V, Antonouli S, Damdimopoulou P, Salumets A, Cecconi S. In vivo and in vitro postovulatory aging: when time works against oocyte quality? J Assist Reprod Genet. 2022;39(4):905–18.

PubMed  PubMed Central  Article  Google Scholar 

Lord T, Nixon B, Jones KT, Aitken RJ. Melatonin prevents postovulatory oocyte aging in the mouse and extends the window for optimal fertilization in vitro. Biol Reprod. 2013;88(3):67.

PubMed  Article  Google Scholar 

Trapphoff T, Heiligentag M, Dankert D, Demond H, Deutsch D, Frohlich T, et al. Postovulatory aging affects dynamics of mRNA, expression and localization of maternal effect proteins, spindle integrity and pericentromeric proteins in mouse oocytes. Hum Reprod. 2016;31(1):133–49.

CAS  PubMed  Article  Google Scholar 

Prasad S, Tiwari M, Koch B, Chaube SK. Morphological, cellular and molecular changes during postovulatory egg aging in mammals. J Biomed Sci. 2015;22:36.

PubMed  PubMed Central  Article  Google Scholar 

Miao Y, Zhou C, Cui Z, Zhang M, ShiYang X, Lu Y, et al. Postovulatory aging causes the deterioration of porcine oocytes via induction of oxidative stress. FASEB J. 2018;32(3):1328–37.

CAS  PubMed  Article  Google Scholar 

Premkumar KV, Chaube SK. An insufficient increase of cytosolic free calcium level results postovulatory aging-induced abortive spontaneous egg activation in rat. J Assist Reprod Genet. 2013;30(1):117–23.

PubMed  Article  Google Scholar 

Dankert D, Demond H, Trapphoff T, Heiligentag M, Rademacher K, Eichenlaub-Ritter U, et al. Pre- and postovulatory aging of murine oocytes affect the transcript level and poly(A) tail length of maternal effect genes. PLoS ONE. 2014;9(10):e108907.

PubMed  PubMed Central  Article  Google Scholar 

Trapphoff T, Heiligentag M, Dankert D, Demond H, Deutsch D, Fröhlich T, et al. Postovulatory aging affects dynamics of mRNA, expression and localization of maternal effect proteins, spindle integrity and pericentromeric proteins in mouse oocytes. Hum Reprod (Oxford England). 2016;31(1):133–49.

CAS  Article  Google Scholar 

Gao Y, Liu X, Tang B, Li C, Kou Z, Li L, et al. Protein Expression Landscape of Mouse Embryos during Pre-implantation Development. Cell Rep. 2017;21(13):3957–69.

CAS  PubMed  Article  Google Scholar 

Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet. 2012;13(4):227–32.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Pfeiffer MJ, Taher L, Drexler H, Suzuki Y, Makałowski W, Schwarzer C, et al. Differences in embryo quality are associated with differences in oocyte composition: a proteomic study in inbred mice. Proteomics. 2015;15(4):675–87.

CAS  PubMed  Article  Google Scholar 

Yang S, Wei Z, Wu J, Sun M, Ma Y, Liu G. Proteomic analysis of liver tissues in chicken embryo at Day 16 and Day 20 reveals antioxidant mechanisms. J Proteom. 2021;243:104258.

CAS  Article  Google Scholar 

Meier F, Brunner AD, Koch S, Koch H, Lubeck M, Krause M, et al. Online Parallel Accumulation-Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer. Mol Cell Proteomics. 2018;17(12):2534–45.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Brzhozovskiy A, Kononikhin A, Bugrova AE, Kovalev GI, Schmit PO, Kruppa G, et al. The Parallel Reaction Monitoring-Parallel Accumulation-Serial Fragmentation (prm-PASEF) Approach for Multiplexed Absolute Quantitation of Proteins in Human Plasma. Anal Chem. 2022;94(4):2016–22.

CAS  PubMed  Article  Google Scholar 

Akkurt Arslan M, Kolman I, Pionneau C, Chardonnet S, Magny R, Baudouin C, et al. Proteomic Analysis of Tears and Conjunctival Cells Collected with Schirmer Strips Using timsTOF Pro: Preanalytical Considerations. Metabolites. 2021;12(1).

Hamada S, Pionneau C, Parizot C, Silvie O, Chardonnet S, Marinach C. In-depth proteomic analysis of Plasmodium berghei sporozoites using trapped ion mobility spectrometry with parallel accumulation-serial fragmentation. Proteomics. 2021;21(6):e2000305.

PubMed  Article  Google Scholar 

Christou-Kent M, Dhellemmes M, Lambert E, Ray PF, Arnoult C. Diversity of RNA-Binding Proteins Modulating Post-Transcriptional Regulation of Protein Expression in the Maturing Mammalian Oocyte. Cells. 2020;9(3).

Xu R, Li C, Liu X, Gao S. Insights into epigenetic patterns in mammalian early embryos. Protein & Cell. 2021;12(1).

Sayers EW, Beck J, Bolton EE, Bourexis D, Brister JR, Canese K, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2021;49(D1):D10-D7.

Article  Google Scholar 

Nadendla S, Jackson R, Munro J, Quaglia F, Mészáros B, Olley D, et al. ECO: the Evidence and Conclusion Ontology, an update for 2022. Nucleic Acids Res. 2022;50(D1):D1515-D21.

Article  Google Scholar 

Demond H, Trapphoff T, Dankert D, Heiligentag M, Grümmer R, Horsthemke B, et al. Preovulatory Aging In Vivo and In Vitro Affects Maturation Rates, Abundance of Selected Proteins, Histone Methylation Pattern and Spindle Integrity in Murine Oocytes. PLoS ONE. 2016;11(9):e0162722.

PubMed  PubMed Central  Article  Google Scholar 

Thompson JG. The impact of nutrition of the cumulus oocyte complex and embryo on subsequent development in ruminants. J Reprod Dev. 2006;52(1):169–75.

CAS  PubMed  Article  Google Scholar 

Ruebel ML, Latham KE. Listening to mother: Long-term maternal effects in mammalian development. Mol Reprod Dev. 2020;87(4):399–408.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Yu H, Wang Y, Wang M, Liu Y, Cheng J, Zhang Q. Growth differentiation factor 9 (gdf9) and bone morphogenetic protein 15 (bmp15) are potential intraovarian regulators of steroidogenesis in Japanese flounder (Paralichthys olivaceus). Gen Comp Endocrinol. 2020;297:113547.

CAS  PubMed  Article  Google Scholar 

Jiang G-J, Wang K, Miao D-Q, Guo L, Hou Y, Schatten H, et al. Protein profile changes during porcine oocyte aging and effects of caffeine on protein expression patterns. PLoS ONE. 2011;6(12):e28996.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Huang JC, Yan LY, Lei ZL, Miao YL, Shi LH, Yang JW, et al. Changes in histone acetylation during postovulatory aging of mouse oocyte. Biol Reprod. 2007;77(4):666–70.

CAS  PubMed  Article  Google Scholar 

Sun Y-L, Tang S-B, Shen W, Yin S, Sun Q-Y. Roles of Resveratrol in Improving the Quality of Postovulatory Aging Oocytes In Vitro. Cells. 2019;8(10).

Liang XW, Ge ZJ, Wei L, Guo L, Han ZM, Schatten H, et al. The effects of postovulatory aging of mouse oocytes on methylation and expression of imprinted genes at mid-term gestation. Mol Hum Reprod. 2011;17(9):562–7.

CAS  PubMed  Article  Google Scholar 

Jin Y, Yang M, Gao C, Yue W, Liang X, Xie B, et al. Fbxo30 regulates chromosome segregation of oocyte meiosis. Cell Mol Life Sci. 2019;76(11):2217–29.

CAS  PubMed  Article  Google Scholar 

Messerschmidt DM, de Vries W, Ito M, Solter D, Ferguson-Smith A, Knowles BB. Trim28 is required for epigenetic stability during mouse oocyte to embryo transition. Science (New York). 2012;335(6075):pp.1499–502.

Google Scholar 

Condic ML. The Role of Maternal-Effect Genes in Mammalian Development: Are Mammalian Embryos Really an Exception? Stem Cell Reviews and Reports. 2016;12(3):276–84.

PubMed  Article  Google Scholar 

Wassarman PM, Kinloch RA. Gene expression during oogenesis in mice. Mutat Res. 1992;296:1–2.

Article  Google Scholar 

Revil T, Gaffney D, Dias C, Majewski J, Jerome-Majewska LA. Alternative splicing is frequent during early embryonic development in mouse. BMC Genomics. 2010;11:399.

PubMed  PubMed Central  Article  Google Scholar 

Xing Y, Yang W, Liu G, Cui X, Meng H, Zhao H, et al. Dynamic Alternative Splicing During Mouse Preimplantation Embryo Development. Front Bioeng Biotechnol. 2020;8:35.

PubMed  PubMed Central  Article  Google Scholar 

Memili E, First NL. Developmental changes in RNA polymerase II in bovine oocytes, early embryos, and effect of alpha-amanitin on embryo development. Mol Reprod Dev. 1998;51(4):381–9.

CAS  PubMed  Article  Google Scholar 

van der Graaf K, Jindrich K, Mitchell R, White-Cooper H. Roles for RNA export factor, Nxt1, in ensuring muscle integrity and normal RNA expression in Drosophila. G3 (Bethesda, Md). 2021;11(1).

Li M, Ren C, Zhou S, He Y, Guo Y, Zhang H, et al. Integrative proteome analysis implicates aberrant RNA splicing in impaired developmental potential of aged mouse oocytes. Aging Cell. 2021;20(10):e13482.

CAS  PubMed  PubMed Central  Article 

留言 (0)

沒有登入
gif