Comparative study of commercial media to improve GMP manufacturing of recombinant human interferon β-1a by CHO cells in perfusion bioreactor

Altamirano C, Paredes C, Illanes A et al (2004) Strategies for fed-batch cultivation of t-PA producing CHO cells: substitution of glucose and glutamine and rational design of culture medium. J Biotechnol 110:171–179. https://doi.org/10.1016/j.jbiotec.2004.02.004

Article  PubMed  CAS  Google Scholar 

Arora M (2013) cell culture media: a review. Mater Methods 3:175. https://doi.org/10.13070/mm.en.3.175

Article  Google Scholar 

Bandaranayake AD, Almo SC (2014) Recent advances in mammalian protein production. FEBS Lett 588:253–260. https://doi.org/10.1016/j.febslet.2013.11.035

Article  PubMed  CAS  Google Scholar 

Bedoya-López A, Estrada K, Sanchez-Flores A et al (2016) Effect of temperature downshift on the transcriptomic responses of Chinese hamster ovary cells using recombinant human tissue plasminogen activator production culture. PLoS ONE 11:0151529. https://doi.org/10.1371/journal.pone.0151529

Article  CAS  Google Scholar 

Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193. https://doi.org/10.1677/jme.0.0250169

Article  PubMed  CAS  Google Scholar 

Chotteau V (2009) Fed-batch or perfusion for the production of biopharmaceuticals by animal cell cultivation. Workshop Securing Quality in Bioanalysis and Production, Stockholm

Google Scholar 

Chuppa S, Tsai YS, Yoon S et al (1997) Fermentor temperature as a tool for control of high-density perfusion cultures of mammalian cells. Biotechnol Bioeng 55:328–338. https://doi.org/10.1002/(SICI)1097-0290(19970720)55:2%3c328::AID-BIT10%3e3.0.CO;2-D

Article  PubMed  CAS  Google Scholar 

Fox SF et al (2003) Maximizing interferon-γ production by chinese hamster ovary cells through temperature shift optimization: experimental and modeling. Biotechnol Bioeng 85:177–184. https://doi.org/10.1002/bit.10861

Article  CAS  Google Scholar 

Fox SR et al (2005) A detailed understanding of the enhanced hypothermic productivity of interferon-gamma by Chinese-hamster ovary cells. Biotechnol Appl Biochem 41:255–264. https://doi.org/10.1042/BA20040066

Article  PubMed  CAS  Google Scholar 

Frerichs KU (1998) Suppression of protein synthesis in brain during hibernation involves inhibition of protein initiation and elongation. Proc Natl Acad Sci USA 95:14511–14516. https://doi.org/10.1073/pnas.95.24.14511

Article  PubMed  PubMed Central  CAS  Google Scholar 

Furukawa K, Ohsuye K (1998) Effect of culture temperature on a recombinant CHO cell line producing a C-terminal α-amidating enzyme. Cytotechnology 26:153–164. https://doi.org/10.1023/A:1007934216507

Article  PubMed  PubMed Central  CAS  Google Scholar 

Gessani S, Conti L, Del Cornò M et al (2014) Type I interferons as regulators of human antigen presenting cell functions. Toxins 6:1696–1723. https://doi.org/10.3390/toxins6061696

Article  PubMed  PubMed Central  CAS  Google Scholar 

Karst DJ, Steinebach F, Morbidelli M (2018) Continuous integrated manufacturing of therapeutic proteins. Curr Opin Biotechnol 53:76–84. https://doi.org/10.1016/j.copbio.2017.12.015

Article  PubMed  CAS  Google Scholar 

Kumar N, Gammell P, Clynes M (2007) Proliferation control strategies to improve productivity and survival during CHO based production culture. Cytotechnology 53:33–46. https://doi.org/10.1007/s10616-007-9047-6

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kumar N, Gammell P, Meleady P (2008) Differential protein expression following low temperature culture of suspension CHO-K1 cells. BMC Biotechnol 8:42. https://doi.org/10.1186/1472-6750-8-42

Article  PubMed  PubMed Central  CAS  Google Scholar 

Leclerc GJ, Leclerc GM, Barredo JC (2002) Real-time RT-PCR analysis of mRNA decay: half-life of Beta-actin mRNA in human leukemia CCRF-CEM and Nalm-6 cell lines. Cancer Cell Int 2:1. https://doi.org/10.1186/1475-2867-2-1

Li F, Vijayasankaran N, Shen A et al (2010) Cell culture processes for monoclonal antibody production. Mabs 2:466–477. https://doi.org/10.4161/mabs.2.5.12720

Article  PubMed  PubMed Central  Google Scholar 

Lin H, Leighty RW, Godfrey S et al (2017) Principles and approach to developing mammalian cell culture media for high cell density perfusion process leveraging established fed-batch media. Biotechnol Prog 33:891–901. https://doi.org/10.1002/btpr.2472

Article  PubMed  CAS  Google Scholar 

Masterton RJ, Smales CM (2014) The impact of process temperature on mammalian cell lines and the implications for the production of recombinant proteins in CHO cells. Pharm Bioprocess 2:49–61. https://doi.org/10.4155/pbp.14.3

Article  Google Scholar 

Mohsenzadegan M, Fayazi MR, Abdolmaleki M et al (2015) Direct immunomodulatory influence of IFN-β on human astrocytoma cells. Immunopharmacol Immunotoxicol. https://doi.org/10.3109/08923973.2015.1014559

Article  PubMed  Google Scholar 

Ohnishi T, Wang X, Ohnishi K et al (1998) p53dependent induction of WAF1 by cold shock in human glioblastoma cells. Oncogene 16:1507–1511. https://doi.org/10.1038/sj.onc.1201663

Article  PubMed  CAS  Google Scholar 

Ozturk S, Hu WS (2005) Cell culture technology for pharmaceutical and cell-based therapies. Taylor Francis. https://doi.org/10.1201/9780849351068

Article  Google Scholar 

Palomares LA, Estrada-Mondaca S, Ramírez OT (2004) Production of recombinant proteins, challenges and solutions. Methods Mol Biol 267:15–52. https://doi.org/10.1385/1-59259-774-2:015

Article  PubMed  CAS  Google Scholar 

Pereira S, Kildegaard HF, Andersen MR (2018) Impact of CHO metabolism on cell growth and protein production: an overview of toxic and inhibiting metabolites and nutrients. Biotechnol J 13:1700499. https://doi.org/10.1002/biot.201700499

Article  CAS  Google Scholar 

Pollock J, Ho SV, Farid SS (2010) Fed-batch and perfusion culture processes: economic, environmental, and operational feasibility under uncertainty. Biotechnol Bioeng 110:206–219. https://doi.org/10.1002/bit.24608

Article  CAS  Google Scholar 

Puente-Massaguer E, Badiella L, Gutiérrez-Granados S et al (2019) A statistical approach to improve compound screening in cell culture media. Eng Life Sci 19:315–327. https://doi.org/10.1002/elsc.201800168

Article  PubMed  PubMed Central  CAS  Google Scholar 

Reuveny S, Velez D, Miller L et al (1986) Factors affecting cell growth and monoclonal antibody production in stirred reactors. J Immunol Methods 86:53–59. https://doi.org/10.1016/0022-1759(86)90264-4

Article  PubMed  CAS  Google Scholar 

Rodriguez J, Spearman M, Huzel N et al (2008) Enhanced production of monomeric interferon-β by CHO cells through the control of culture conditions. Biotechnol Prog 21:22–30. https://doi.org/10.1021/bp049807b

Article  CAS  Google Scholar 

Rodriguez J, Spearman M, Tharmalingam T et al (2010) High productivity of human recombinant beta-interferon from a low-temperature perfusion culture. J Biotechnol 150:509–518. https://doi.org/10.1016/j.jbiotec.2010.09.959

Article  PubMed  CAS  Google Scholar 

Roobol A, Roobol J, Carden MJ (2011) ATR (ataxia telangiectasia mutated- and Rad3-related kinase) is activated by mild hypothermia in mammalian cells and subsequently activates p53. Biochem J 435:499–508. https://doi.org/10.1042/BJ20101303

Article  PubMed  CAS  Google Scholar 

Ross J (1995) mRNA stability in mammalian cells. Microbiol Rev 59:423–450. https://doi.org/10.1128/mr.59.3.423-450.1995

Article  PubMed  PubMed Central  CAS  Google Scholar 

Shani N, Isolini D, Marzohl D et al (2021) Evaluation of a new culture medium for the enumeration and isolation of Streptococcus salivarius subsp. thermophilus from cheese. Food Microbiol 95:103672. https://doi.org/10.1016/j.fm.2020.103672

Article  PubMed  CAS  Google Scholar 

Spearman M, Rodriguez J, Huzel N et al (2007) Effect of culture conditions on glycosylation of recombinant beta-interferon in CHO cells. Cell Technol Cell Prod. https://doi.org/10.1007/978-1-4020-5476-1_11

Article  Google Scholar 

Tharmalingam T, Sunley K, Butler M (2008) High yields of monomeric recombinant β interferon from macroporous microcarrier cultures under hypothermic conditions. Biotechnol Prog 24:832–838. https://doi.org/10.1002/btpr.8

Article  PubMed  CAS  Google Scholar 

van Mastrigt O, Abee T, Lillevang SK et al (2018) Quantitative physiology and aroma formation of a dairy Lactococcus lactis at near-zero growth rates. Food Microbial 73:216–226. https://doi.org/10.1016/j.fm.2018.01.027

Article  Google Scholar 

Whitford WG (2006) Fed-batch mammalian cell culture in bioproduction. BioProcess Int 4:30–40

CAS  Google Scholar 

Xu J, Tang P, Yongky A et al (2019) Systematic development of temperature shift strategies for Chinese hamster ovary cells based on short duration cultures and kinetic modeling. Mabs 11:191–204. https://doi.org/10.1080/19420862.2018.1525262

Article  PubMed  CAS  Google Scholar 

Yang H (1991) Selection of culture media for human and rabbit corneal epithelia. Chin J Ophthalmol 27:351–353

CAS  Google Scholar 

Yang Z, Xiong HR (2012) Culture conditions and types of growth media for mammalian cells. Biomed Tissue Cult. https://doi.org/10.5772/52301

Article  Google Scholar 

Yoon SK, Song JY, Lee GM (2003) Effect of low culture temperature on specific productivity, transcription level, and heterogeneity of erythropoietin in Chinese hamster ovary cells. Biotechnol Bioeng 82:289–298. https://doi.org/10.1002/bit.10566

Article  PubMed  CAS  Google Scholar 

Yusufi F, Lakshmanan M, Ho YS et al (2017) Mammalian systems biotechnology reveals global cellular adaptations in a recombinant CHO cell line. Cell Syst 4:530–542. https://doi.org/10.1016/j.cels.2017.04.009

留言 (0)

沒有登入
gif