Mild Hyperhomocysteinemia Causes Anxiety-like Behavior and Brain Hyperactivity in Rodents: Are ATPase and Excitotoxicity by NMDA Receptor Overstimulation Involved in this Effect?

Arteni NS, Pereira LO, Rodrigues AL et al (2010) Lateralized and sex-dependent behavioral and morphological effects of unilateral neonatal cerebral hypoxia-ischemia in the rat. Behav Brain Res 210:92–98. https://doi.org/10.1016/j.bbr.2010.02.015

CAS  Article  PubMed  Google Scholar 

Bailey KR, Crawley JN (2009) Anxiety-Related Behaviors in Mice. In: Buccafusco JJ (ed) Methods of Behavior Analysis in Neuroscience., 2nd edition. Boca Raton (FL): CRC Press/Taylor & Francis, Boca Raton (FL)

Baird L, Dinkova-Kostova AT (2011) The cytoprotective role of the Keap1-Nrf2 pathway. Arch Toxicol 85:241–272. https://doi.org/10.1007/s00204-011-0674-5

CAS  Article  PubMed  Google Scholar 

Bandelow B, Michaelis S (2015) Epidemiology of anxiety disorders in the 21st century. Dialogues Clin Neurosci 17:327–335

Article  Google Scholar 

Belleau EL, Pedersen WS, Miskovich TA et al (2018) Cortico-limbic connectivity changes following fear extinction and relationships with trait anxiety. Soc Cogn Affect Neurosci 13:1037–1046. https://doi.org/10.1093/scan/nsy073

Article  PubMed  PubMed Central  Google Scholar 

Bhatia P, Singh N (2015) Homocysteine excess: Delineating the possible mechanism of neurotoxicity and depression. Fundam Clin Pharmacol 29:522–528. https://doi.org/10.1111/fcp.12145

CAS  Article  PubMed  Google Scholar 

Blanke ML, Vandongen AMJ (2009) Activation Mecanisms of the NMDA Receptor. In: Van Dongen A (ed) Biology of the NMDA Receptor. CRC Press/Taylor & Francis, Boca Raton (FL), pp 1–24

Google Scholar 

Boldyrev AA (2005) Homocysteinic acid causes oxidative stress in lymphocytes by potentiating toxic effect of NMDA. Bull Exp Biol Med 140:33–37. https://doi.org/10.1007/s10517-005-0404-1

CAS  Article  PubMed  Google Scholar 

Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

CAS  Article  Google Scholar 

Browne RW, Armstrong D (1998) Reduced glutathione and glutathione disulfide. Methods Mol Biol 108:347–352

CAS  PubMed  Google Scholar 

Carageorgiou H, Sideris AC, Messari I et al (2008) The effects of rivastigmine plus selegiline on brain acetylcholinesterase, (Na+, K+)-, Mg2+- ATPase activities, antioxidant status, and learning performance of aged rats. Neuropsychiatr Dis Treat 4:687–699

CAS  Article  Google Scholar 

Chan K, Delfert D, Junger K (1986) A direct colorimetric assay for Ca2+-stimulated ATPase activity. Anal Biochem 157:375–380

CAS  Article  Google Scholar 

Choudhury S, Borah A (2015) Activation of NMDA receptor by elevated homocysteine in chronic liver disease contributes to encephalopathy. Med Hypotheses 85:64–67. https://doi.org/10.1016/j.mehy.2015.03.027

CAS  Article  PubMed  Google Scholar 

Chung K, Chiou H, Chen Y (2017) Associations between serum homocysteine levels and anxiety and depression among children and adolescents in Taiwan. Sci Rep. https://doi.org/10.1038/s41598-017-08568-9

Article  PubMed  PubMed Central  Google Scholar 

Clarke R (2011) Homocysteine, B vitamins, and the risk of cardiovascular disease. Clin Chem 57:1201–1202. https://doi.org/10.1373/clinchem.2011.164855

CAS  Article  PubMed  Google Scholar 

Crema L, Schlabitz M, Tagliari B et al (2010) Na+, K+-ATPase activity is reduced in Amygdala of rats with chronic stress-induced anxiety-like behavior. Neurochem Res 35:1787–1795. https://doi.org/10.1007/s11064-010-0245-9

CAS  Article  PubMed  Google Scholar 

da Silva FF, de Ferreira AP, O, Ribeiro LR, et al (2016) The impact of previous physical training on redox signaling after traumatic brain injury in rats: A behavioral and neurochemical approach. J Neurotrauma 33:1317–1330. https://doi.org/10.1089/neu.2015.4068

Article  PubMed  Google Scholar 

de Arnaiz GR, L, Ordieres MGL, (2014) Brain Na+, K+-ATPase activity in aging and disease. Int J Biomed Sci 10:85–102

Google Scholar 

de Wyse AT, S, Streck EL, Worm P, et al (2000) Preconditioning prevents the inhibition of NA+, K+-ATPase activity after brain ischemia. Neurochem Res 25:971–975. https://doi.org/10.1023/A:1007504525301

CAS  Article  Google Scholar 

Diehl LA, Pereira NDSC, Laureano DP et al (2014) Contextual fear conditioning in maternal separated rats: The amygdala as a site for alterations. Neurochem Res 39:384–393. https://doi.org/10.1007/s11064-013-1230-x

CAS  Article  PubMed  Google Scholar 

dos Santos AQ, Nardin P, Funchal C et al (2006) Resveratrol increases glutamate uptake and glutamine synthetase activity in C6 glioma cells. Arch Biochem Biophys 453:161–167. https://doi.org/10.1016/j.abb.2006.06.025

CAS  Article  PubMed  Google Scholar 

dos Santos TM, Siebert C, Federizzi M et al (2019) Chronic mild Hyperhomocysteinemia impairs energy metabolism, promotes DNA damage and induces a Nrf2 response to oxidative stress in rats brain. Cell Mol Neurobiol. https://doi.org/10.1007/s10571-019-00674-8

Article  PubMed  Google Scholar 

dos Santos TM, Kolling J, Siebert C et al (2017) Effects of previous physical exercise to chronic stress on long-term aversive memory and oxidative stress in amygdala and hippocampus of rats. Int J Dev Neurosci 56:58–67. https://doi.org/10.1016/j.ijdevneu.2016.12.003

CAS  Article  PubMed  Google Scholar 

Esnafoglu E, Yaman E (2017) Vitamin B12, folic acid, homocysteine and vitamin D levels in children and adolescents with obsessive compulsive disorder. Psychiatry Res 254:232–237. https://doi.org/10.1016/j.psychres.2017.04.032

CAS  Article  PubMed  Google Scholar 

Finkelstein JD (2007) Metabolic regulatory properties of S-adenosylmethionine and S-adenosylhomocysteine. Clin Chem Lab Med 45:1694–1699. https://doi.org/10.1515/CCLM.2007.341

CAS  Article  PubMed  Google Scholar 

Foo K, Blumenthal L, Man HY (2012) Regulation of neuronal bioenergy homeostasis by glutamate. Neurochem Int 61:389–396. https://doi.org/10.1016/j.neuint.2012.06.003

CAS  Article  PubMed  PubMed Central  Google Scholar 

Ganapathy PS, White RE, Ha Y et al (2011) The role of N-methyl-D-aspartate receptor activation in homocysteine-induced death of retinal ganglion cells. Investig Ophthalmol vis Sci 52:5515–5524. https://doi.org/10.1167/iovs.10-6870

CAS  Article  Google Scholar 

Green LC, Wagner DA, Glogowski J et al (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126:131–138. https://doi.org/10.1016/0003-2697(82)90118-X

CAS  Article  PubMed  Google Scholar 

Grigor’yan GA, Gulyaeva N V, (2017) Modeling depression in animals : Behavior as the basis for the methodology, assessment criteria, and classification. Neurosci Behav Physiol 47:204–216. https://doi.org/10.1007/s11055-016-0386-7

Article  Google Scholar 

Ikeda K, Onaka T, Yamakado M et al (2003) Degeneration of the amygdala/piriform cortex and enhanced fear/anxiety behaviors in sodium pump alpha2 subunit (Atp1a2)-deficient mice. J Neurosci 23:4667–4676

CAS  Article  Google Scholar 

Izquierdo I, Furini CRG, Myskiw JC (2016) Fear memory. Physiol Rev 96:695–750. https://doi.org/10.1152/physrev.00018.2015

Article  PubMed  Google Scholar 

Jendricko T, Andelko V, Grubisic-llic M et al (2009) Progress in Neuro-Psychopharmacology & Biological Psychiatry Homocysteine and serum lipids concentration in male war veterans with posttraumatic stress disorder. Prog Neuro-Psychopharmacology Biol Psychiatry 33(33):134–140. https://doi.org/10.1016/j.pnpbp.2008.11.002

CAS  Article  Google Scholar 

John CS, Sypek EI, Carlezon WA et al (2015) Blockade of the GLT-1 transporter in the central nucleus of the amygdala induces both anxiety and depressive-like symptoms. Neuropsychopharmacol 40:1700–1708. https://doi.org/10.1038/npp.2015.16

CAS  Article  Google Scholar 

Kim HK, Nunes PV, Oliveira KC et al (2016) Neuropathological relationship between major depression and dementia: A hypothetical model and review. Prog Neuro-Psychopharmacology Biol Psychiatry 67:51–57. https://doi.org/10.1016/j.pnpbp.2016.01.008

Article  Google Scholar 

Kim MJ, Loucks R, a, Palmer AL, et al (2011) The structural and functional connectivity of the amygdala: From normal emotion to pathological anxiety. Behav Brain Res 223:403–410. https://doi.org/10.1016/j.bbr.2011.04.025

Article  PubMed  PubMed Central  Google Scholar 

Kinoshita PF, Leite JA, Orellana AMM et al (2016) The influence of Na+, K+-ATPase on glutamate signaling in neurodegenerative diseases and senescence. Front Physiol 7:1–19. https://doi.org/10.3389/fphys.2016.00195

Article  Google Scholar 

Kumagai A, Sasaki T, Matsuoka K et al (2019) Monitoring of glutamate-induced excitotoxicity by mitochondrial oxygen consumption. Synapse 73:e22067. https://doi.org/10.1002/syn.22067

CAS  Article  PubMed  Google Scholar 

Kumar A, Palfrey HA, Pathak R et al (2017) The metabolism and significance of homocysteine in nutrition and health. Nutr Metab 14:1–12. https://doi.org/10.1186/s12986-017-0233-z

CAS  Article  Google Scholar 

Lavinsky D, Arteni NS, Netto CA (2003) Agmatine induces anxiolysis in the elevated plus maze task in adult rats. Behav Brain Res 141:19–24. https://doi.org/10.1016/s0166-4328(02)00326-1

CAS  Article  PubMed  Google Scholar 

Lebel CP, Ischiropoulos H (1992) Bondys SC (1992) Evaluation of the probe 2‘,7‘-dichiorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231

CAS  Article  Google Scholar 

Lewerenz J, Maher P, Maher P (2015) Chronic glutamate toxicity in neurodegenerative diseases — what is the evidence? Front Neurosci 9:1–20. https://doi.org/10.3389/fnins.2015.00469

Article  Google Scholar 

Li PA, Hou X, Hao S (2017) Mitochondrial biogenesis in neurodegeneration. J Neurosci Res 95:2025–2029. https://doi.org/10.1002/jnr.24042

CAS  Article 

留言 (0)

沒有登入
gif