Trimethylamine N-oxide: role in cell senescence and age-related diseases

Jang JY, Blum A, Liu J, Finkel T (2018) The role of mitochondria in aging. J Clin Investig 128(9):3662–3670. https://doi.org/10.1172/jci120842

Article  PubMed  PubMed Central  Google Scholar 

Kirkwood TB (2005) Understanding the odd science of aging. Cell 120(4):437–447. https://doi.org/10.1016/j.cell.2005.01.027

CAS  Article  PubMed  Google Scholar 

Kirkland JL, Tchkonia T (2017) Cellular senescence: a translational perspective. EBioMedicine 21:21–28. https://doi.org/10.1016/j.ebiom.2017.04.013

Article  PubMed  PubMed Central  Google Scholar 

Pignolo RJ, Passos JF, Khosla S, Tchkonia T, Kirkland JL (2020) Reducing senescent cell burden in aging and disease. Trends Mol Med 26(7):630–638. https://doi.org/10.1016/j.molmed.2020.03.005

CAS  Article  PubMed  PubMed Central  Google Scholar 

Dumas ME, Barton RH, Toye A, Cloarec O, Blancher C, Rothwell A, Fearnside J, Tatoud R, Blanc V, Lindon JC, Mitchell SC, Holmes E, McCarthy MI, Scott J, Gauguier D, Nicholson JK (2006) Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci USA 103(33):12511–12516. https://doi.org/10.1073/pnas.0601056103

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wen L, Ley RE, Volchkov PY, Stranges PB, Avanesyan L, Stonebraker AC, Hu C, Wong FS, Szot GL, Bluestone JA, Gordon JI, Chervonsky AV (2008) Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 455(7216):1109–1113. https://doi.org/10.1038/nature07336

CAS  Article  PubMed  PubMed Central  Google Scholar 

Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101(44):15718–15723. https://doi.org/10.1073/pnas.0407076101

CAS  Article  PubMed  PubMed Central  Google Scholar 

Sergeev IN, Aljutaily T, Walton G, Huarte E (2020) Effects of synbiotic supplement on human gut microbiota, body composition and weight loss in obesity. Nutrients 12:1. https://doi.org/10.3390/nu12010222

CAS  Article  Google Scholar 

Quigley EMM (2017) Microbiota-brain-gut axis and neurodegenerative diseases. Curr Neurol Neurosci Rep 17(12):94. https://doi.org/10.1007/s11910-017-0802-6

CAS  Article  PubMed  Google Scholar 

Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, Challis C, Schretter CE, Rocha S, Gradinaru V, Chesselet MF, Keshavarzian A, Shannon KM, Krajmalnik-Brown R, Wittung-Stafshede P, Knight R, Mazmanian SK (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167(6):1469-1480.e1412. https://doi.org/10.1016/j.cell.2016.11.018

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wang X, Sun G, Feng T, Zhang J, Huang X, Wang T, Xie Z, Chu X, Yang J, Wang H, Chang S, Gong Y, Ruan L, Zhang G, Yan S, Lian W, Du C, Yang D, Zhang Q, Lin F, Liu J, Zhang H, Ge C, Xiao S, Ding J, Geng M (2019) Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res 29(10):787–803. https://doi.org/10.1038/s41422-019-0216-x

CAS  Article  PubMed  PubMed Central  Google Scholar 

Chen K, Zheng X, Feng M, Li D, Zhang H (2017) Gut microbiota-dependent metabolite trimethylamine N-oxide contributes to cardiac dysfunction in western diet-induced obese mice. Front Physiol 8:139. https://doi.org/10.3389/fphys.2017.00139

Article  PubMed  PubMed Central  Google Scholar 

Rohrmann S, Linseisen J, Allenspach M, von Eckardstein A, Müller D (2016) plasma concentrations of trimethylamine-N-oxide are directly associated with dairy food consumption and low-grade inflammation in a german adult population. J Nutr 146(2):283–289. https://doi.org/10.3945/jn.115.220103

CAS  Article  PubMed  Google Scholar 

Pascal MC, Burini JF, Chippaux M (1984) Regulation of the trimethylamine N-oxide (TMAO) reductase in escherichia coli: analysis of tor::mud1 operon fusion. Mol Gen Genet MGG 195(1–2):351–355. https://doi.org/10.1007/bf00332770

CAS  Article  PubMed  Google Scholar 

Craciun S, Marks JA, Balskus EP (2014) Characterization of choline trimethylamine-lyase expands the chemistry of glycyl radical enzymes. ACS Chem Biol 9(7):1408–1413. https://doi.org/10.1021/cb500113p

CAS  Article  PubMed  Google Scholar 

Zhu Y, Jameson E, Crosatti M, Schäfer H, Rajakumar K, Bugg TD, Chen Y (2014) Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota. Proc Natl Acad Sci USA 111(11):4268–4273. https://doi.org/10.1073/pnas.1316569111

CAS  Article  PubMed  PubMed Central  Google Scholar 

Andreesen JR (1994) Glycine metabolism in anaerobes. Antonie Van Leeuwenhoek 66(1–3):223–237. https://doi.org/10.1007/bf00871641

CAS  Article  PubMed  Google Scholar 

Ke Y, Li D, Zhao M, Liu C, Liu J, Zeng A, Shi X, Cheng S, Pan B, Zheng L, Hong H (2018) Gut flora-dependent metabolite trimethylamine-N-oxide accelerates endothelial cell senescence and vascular aging through oxidative stress. Free Radical Biol Med 116:88–100. https://doi.org/10.1016/j.freeradbiomed.2018.01.007

CAS  Article  Google Scholar 

Flood JF, Morley JE (1998) Learning and memory in the SAMP8 mouse. Neurosci Biobehav Rev 22(1):1–20. https://doi.org/10.1016/s0149-7634(96)00063-2

CAS  Article  PubMed  Google Scholar 

Brunt VE, Gioscia-Ryan RA, Casso AG, VanDongen NS, Ziemba BP, Sapinsley ZJ, Richey JJ, Zigler MC, Neilson AP, Davy KP, Seals DR (2020) Trimethylamine-N-oxide promotes age-related vascular oxidative stress and endothelial dysfunction in mice and healthy humans. Hypertension 76(1):101–112. https://doi.org/10.1161/hypertensionaha.120.14759

CAS  Article  PubMed  Google Scholar 

Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria M, Alimonti A (2019) Cellular senescence: aging, cancer, and injury. Physiol Rev 99(2):1047–1078. https://doi.org/10.1152/physrev.00020.2018

CAS  Article  PubMed  Google Scholar 

Hernandez-Segura A, Nehme J, Demaria M (2018) Hallmarks of cellular senescence. Trends Cell Biol 28(6):436–453. https://doi.org/10.1016/j.tcb.2018.02.001

CAS  Article  PubMed  Google Scholar 

Casella G, Tsitsipatis D, Abdelmohsen K, Gorospe M (2019) mRNA methylation in cell senescence. Wiley Interdiscip Rev RNA 10(6):e1547. https://doi.org/10.1002/wrna.1547

Article  PubMed  PubMed Central  Google Scholar 

He S, Sharpless NE (2017) Senescence in health and disease. Cell 169(6):1000–1011. https://doi.org/10.1016/j.cell.2017.05.015

CAS  Article  PubMed  PubMed Central  Google Scholar 

Adams PD (2009) Healing and hurting: molecular mechanisms, functions, and pathologies of cellular senescence. Mol Cell 36(1):2–14. https://doi.org/10.1016/j.molcel.2009.09.021

CAS  Article  PubMed  Google Scholar 

Bernadotte A, Mikhelson VM, Spivak IM (2016) Markers of cellular senescence telomere shortening as a marker of cellular senescence. Aging 8(1):3–11

CAS  Article  Google Scholar 

Rezzani R, Nardo L, Favero G, Peroni M, Rodella LF (2014) Thymus and aging: morphological, radiological, and functional overview. Age (Dordr) 36(1):313–351. https://doi.org/10.1007/s11357-013-9564-5

Article  Google Scholar 

Childs BG, Durik M, Baker DJ, van Deursen JM (2015) Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med 21(12):1424–1435. https://doi.org/10.1038/nm.4000

CAS  Article  PubMed  PubMed Central  Google Scholar 

Salminen A, Kauppinen A, Kaarniranta K (2012) Emerging role of NF-κB signaling in the induction of senescence-associated secretory phenotype (SASP). Cell Signal 24(4):835–845. https://doi.org/10.1016/j.cellsig.2011.12.006

CAS  Article  PubMed  Google Scholar 

Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6(12):2853–2868. https://doi.org/10.1371/journal.pbio.0060301

CAS  Article  PubMed  Google Scholar 

Basisty N, Kale A, Jeon OH, Kuehnemann C, Payne T, Rao C, Holtz A, Shah S, Sharma V, Ferrucci L, Campisi J, Schilling B (2020) A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol 18(1):e3000599. https://doi.org/10.1371/journal.pbio.3000599

CAS  Article  PubMed  PubMed Central  Google Scholar 

Wiley CD, Liu S, Limbad C, Zawadzka AM, Beck J, Demaria M, Artwood R, Alimirah F, Lopez-Dominguez JA, Kuehnemann C, Danielson SR, Basisty N, Kasler HG, Oron TR, Desprez PY, Mooney SD, Gibson BW, Schilling B, Campisi J, Kapahi P (2019) SILAC analysis reveals increased secretion of hemostasis-related factors by senescent cells. Cell Rep 28(13):3329-3337.e5. https://doi.org/10.1016/j.celrep.2019.08.049

CAS  Article  PubMed  PubMed Central  Google Scholar 

Davalos AR, Kawahara M, Malhotra GK, Schaum N, Huang J, Ved U, Beausejour CM, Coppe JP, Rodier F, Campisi J (2013) p53-Dependent release of alarmin HMGB1 is a central mediator of senescent phenotypes. J Cell Biol 201(4):613–629. https://doi.org/10.1083/jcb.201206006

CAS  Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif