Motion detection and correction for carotid MRI using a markerless optical system

ElsevierVolume 94, December 2022, Pages 161-167Magnetic Resonance ImagingAbstractPurpose

Motion related artifact is a challenge for MRI, especially when imaging regions like the carotid artery where complex motion (abrupt and bulk motion) may occur. This study aims to develop a non-contact motion detection and correction system for carotid MRI using a markerless optical tracking system.

Methods

The proposed markerless optical tracking system consisted of a cross-line laser, an MRI-compatible camera and plastic holders mounted inside the scanner bore. The neck motion of the subject can be captured by monitoring the change of the projected laser position in real-time. The system was used to correct both abrupt motion and bulk motion for carotid MRI. The abrupt motion (e.g. coughing) was compensated by discarding the corrupted k-space lines and re-estimating the missing lines using SPIRiT algorithm. The bulk motion was corrected by phase adjustment of k-space lines according to the measured 1D-translational bulk motion (along anterior-posterior direction) and optimized in-plane translation parameters. Ten volunteers underwent carotid MRI with real-time neck motion detection and retrospective motion correction. Artery sharpness, vessel wall thickness and overall image quality score were compared between the motion-corrupted image and motion-corrected images of different correction strategies.

Results

Both the abrupt motion and the bulk motion during carotid scanning were successfully detected and corrected. The results of ten volunteers demonstrated significant improvement in carotid artery sharpness, vessel wall thickness measurement, and overall image quality score using the proposed markerless optical tracking system and motion correction strategies.

Conclusion

The proposed markerless structured light based motion detection and correction system can sensitively detect both abrupt and bulk motion during carotid MR scans. By correcting for both abrupt and bulk motion, vessel wall delineation was improved in carotid MR images, which could potentially facilitate carotid plaque identification and atherosclerosis diagnosis in the future.

Keywords

Carotid MRI

Atherosclerosis

Motion correction

Optical tracking

Structured light

Vessel wall

View full text

© 2022 Elsevier Inc. All rights reserved.

留言 (0)

沒有登入
gif