DrugRep: an automatic virtual screening server for drug repurposing

Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 2004;3:673–83.

CAS  PubMed  Article  Google Scholar 

Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18:41–58.

CAS  PubMed  Article  Google Scholar 

Druker BJ. Imatinib as a paradigm of targeted therapies. Adv Cancer Res. 2004;91:1–30.

CAS  PubMed  Article  Google Scholar 

Bibbins-Domingo K. Aspirin use for the primary prevention of cardiovascular disease and colorectal cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2016;164:836–45.

PubMed  Article  Google Scholar 

Dotolo S, Marabotti A, Facchiano A, Tagliaferri R. A review on drug repurposing applicable to COVID-19. Brief Bioinform. 2021;22:726–41.

CAS  PubMed  Article  Google Scholar 

Fan HH, Wang LQ, Liu WL, An XP, Liu ZD, He XQ, et al. Repurposing of clinically approved drugs for treatment of coronavirus disease 2019 in a 2019-novel coronavirus-related coronavirus model. Chin Med J (Engl). 2020;133:1051–6.

Article  Google Scholar 

Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020;109:102433.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Liu Y, Gan J, Wang R, Yang X, Xiao Z, Cao Y. DrugDevCovid19: an atlas of anti-COVID-19 compounds derived by computer-aided drug design. Molecules 2022;27:683.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Cha Y, Erez T, Reynolds IJ, Kumar D, Ross J, Koytiger G, et al. Drug repurposing from the perspective of pharmaceutical companies. Br J Pharmacol. 2018;175:168–80.

CAS  PubMed  Article  Google Scholar 

Rester U. From virtuality to reality - Virtual screening in lead discovery and lead optimization: a medicinal chemistry perspective. Curr Opin Drug Discov Devel. 2008;11:559–68.

CAS  PubMed  Google Scholar 

Maia EHB, Assis LC, de Oliveira TA, da Silva AM, Taranto AG. Structure-based virtual screening: from classical to artificial intelligence. Front Chem. 2020;8:343.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Levitt DG, Banaszak LJ. POCKET: a computer graphies method for identifying and displaying protein cavities and their surrounding amino acids. J Mol Graph. 1992;10:229–34.

CAS  PubMed  Article  Google Scholar 

Brylinski M, Feinstein WP. eFindSite: improved prediction of ligand binding sites in protein models using meta-threading, machine learning and auxiliary ligands. J Comput Aided Mol Des. 2013;27:551–67.

CAS  PubMed  Article  Google Scholar 

Xu Y, Wang S, Hu Q, Gao S, Ma X, Zhang W, et al. CavityPlus: a web server for protein cavity detection with pharmacophore modelling, allosteric site identification and covalent ligand binding ability prediction. Nucleic Acids Res. 2018;46:W374–9.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Wu Q, Peng Z, Zhang Y, Yang J. COACH-D: improved protein-ligand binding sites prediction with refined ligand-binding poses through molecular docking. Nucleic Acids Res. 2018;46:W438–42.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Yang J, Roy A, Zhang Y. Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics. 2013;29:2588–95.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD. Improved protein-ligand docking using GOLD. Proteins. 2003;52:609–23.

CAS  PubMed  Article  Google Scholar 

Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47:1739–49.

CAS  PubMed  Article  Google Scholar 

Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–61.

CAS  PubMed  PubMed Central  Google Scholar 

Lang PT, Brozell SR, Mukherjee S, Pettersen EF, Meng EC, Thomas V, et al. DOCK 6: combining techniques to model RNA-small molecule complexes. RNA. 2009;15:1219–30.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Grosdidier A, Zoete V, Michielin O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 2011;39:W270–7.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Zhang W, Bell EW, Yin M, Zhang Y. EDock: blind protein-ligand docking by replica-exchange monte carlo simulation. J Cheminform. 2020;12:37.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ouyang X, Zhou S, Ge Z, Li R, Kwoh CK. CovalentDock Cloud: a web server for automated covalent docking. Nucleic Acids Res. 2013;41:W329–32.

PubMed  PubMed Central  Article  Google Scholar 

Durant JL, Leland BA, Henry DR, Nourse JG. Reoptimization of MDL keys for use in drug discovery. J Chem Inf Comput Sci. 2002;42:1273–80.

CAS  PubMed  Article  Google Scholar 

O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: an open chemical toolbox. J Cheminform. 2011;3:33.

PubMed  PubMed Central  Article  Google Scholar 

Rogers D, Hahn M. Extended-connectivity fingerprints. J Chem Inf Model. 2010;50:742–54.

CAS  PubMed  Article  Google Scholar 

Hu J, Liu Z, Yu DJ, Zhang Y. LS-align: an atom-level, flexible ligand structural alignment algorithm for high-throughput virtual screening. Bioinformatics. 2018;34:2209–18.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Irwin JJ, Shoichet BK, Mysinger MM, Huang N, Colizzi F, Wassam P, et al. Automated docking screens: a feasibility study. J Med Chem. 2009;52:5712–20.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Prakhov ND, Chernorudskiy AL, Gainullin MR. VSDocker: a tool for parallel high-throughput virtual screening using AutoDock on Windows-based computer clusters. Bioinformatics. 2010;26:1374–5.

CAS  PubMed  Article  Google Scholar 

Tsai TY, Chang KW, Chen CY. iScreen: world’s first cloud-computing web server for virtual screening and de novo drug design based on TCM database@Taiwan. J Comput Aided Mol Des. 2011;25:525–31.

CAS  PubMed  Article  Google Scholar 

Labbé CM, Rey J, Lagorce D, Vavruša M, Becot J, Sperandio O, et al. MTiOpenScreen: a web server for structure-based virtual screening. Nucleic Acids Res. 2015;43:W448–54.

PubMed  PubMed Central  Article  Google Scholar 

Roy A, Srinivasan B, Skolnick J. PoLi: a virtual screening pipeline based on template pocket and ligand similarity. J Chem Inf Model. 2015;55:1757–70.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lešnik S, Štular T, Brus B, Knez D, Gobec S, Janežič D, et al. LiSiCA: a software for ligand-based virtual screening and its application for the discovery of butyrylcholinesterase inhibitors. J Chem Inf Model. 2015;55:1521–8.

PubMed  Article  Google Scholar 

Zoete V, Daina A, Bovigny C, Michielin O. SwissSimilarity: a web tool for low to ultra high throughput ligand-based virtual screening. J Chem Inf Model. 2016;56:1399–404.

CAS  PubMed  Article  Google Scholar 

Shang J, Dai X, Li Y, Pistolozzi M, Wang L. HybridSim-VS: a web server for large-scale ligand-based virtual screening using hybrid similarity recognition techniques. Bioinformatics. 2017;33:3480–1.

CAS  PubMed  Article  Google Scholar 

Ebejer JP, Finn PW, Wong WK, Deane CM, Morris GM. Ligity: a non-superpositional, knowledge-based approach to virtual screening. J Chem Inf Model. 2019;59:2600–16.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Liu Y, Grimm M, Dai WT, Hou MC, Xiao ZX, Cao Y. CB-Dock: a web server for cavity detection-guided protein-ligand blind docking. Acta Pharmacol Sin. 2020;41:138–44.

PubMed  Article 

留言 (0)

沒有登入
gif