Pharmacokinetics and Pharmacodynamics of TAK-164 Antibody Drug Conjugate Coadministered with Unconjugated Antibody

Khongorzul P, Ling CJ, Khan FU, Ihsan AU, Zhang J. Antibody-drug conjugates: a comprehensive review. Mol Cancer Res. 2020;18(1):3–19.

CAS  PubMed  Article  Google Scholar 

Coats S, Williams M, Kebble B, Dixit R, Tseng L, Yao NS, et al. Antibody-drug conjugates: future directions in clinical and translational strategies to improve the therapeutic index. Clin Cancer Res. 2019;25(18):5441–8.

CAS  PubMed  Article  Google Scholar 

Lambert JM, Berkenblit A. Antibody-drug conjugates for cancer treatment. Annu Rev Med. 2018;69:191–207.

CAS  PubMed  Article  Google Scholar 

Tumey LN. An overview of the current ADC discovery landscape. In: Tumey L, editor. Antibody-drug conjugates. Methods in molecular biology, vol. 2078. New York: Humana; 2020.

Khera E, Thurber GM. Pharmacokinetic and immunological considerations for expanding the therapeutic window of next-generation antibody-drug conjugates. BioDrugs. 2018;32(5):465–80.

PubMed  Article  Google Scholar 

Dennis MS, Jin H, Dugger D, Yang R, McFarland L, Ogasawara A, Williams S, Cole MJ, Ross S, Schwall R. Imaging tumors with an albumin-binding Fab, a novel tumor-targeting agent. Cancer Res. 2007;67(1):254–61.

CAS  PubMed  Article  Google Scholar 

Bennett G, Brown A, Mudd G, Huxley P, Van Rietschoten K, Pavan S, et al. MMAE delivery using the bicycle toxin conjugate BT5528. Mol Cancer Ther. 2020;19(7):1385–94.

CAS  PubMed  Article  Google Scholar 

Bordeau BM, Yang Y, Balthasar JP. Transient competitive inhibition bypasses the binding site barrier to improve tumor penetration of trastuzumab and enhance T-DM1 Efficacy. Cancer Res. 2021;81(15):4145–54.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Rudnick SI, Lou JL, Shaller CC, Tang Y, Klein-Szanto AJP, Weiner LM, et al. Influence of affinity and antigen internalization on the uptake and penetration of anti-HER2 antibodies in solid tumors. Can Res. 2011;71(6):2250–9.

CAS  Article  Google Scholar 

Tsumura R, Manabe S, Takashima H, Koga Y, Yasunaga M, Matsumura Y. Influence of the dissociation rate constant on the intra-tumor distribution of antibody-drug conjugate against tissue factor. J Control Release. 2018;284:49–56.

CAS  PubMed  Article  Google Scholar 

Cilliers C, Guo H, Liao J, Christodolu N, Thurber GM. Multiscale modeling of antibody-drug conjugates: connecting tissue and cellular distribution to whole animal pharmacokinetics and potential implications for efficacy. AAPS J. 2016;18(5):1117–30.

CAS  PubMed  Article  Google Scholar 

Cilliers C, Menezes B, Nessler I, Linderman J, Thurber GM. Improved tumor penetration and single-cell targeting of antibody–drug conjugates increases anticancer efficacy and host survival. Can Res. 2018;78(3):758–68.

CAS  Article  Google Scholar 

Menezes B, Cilliers C, Wessler T, Thurber GM, Linderman JJ. An agent-based systems pharmacology model of the antibody-drug conjugate kadcyla to predict efficacy of different dosing regimens. AAPS J. 2020;22(2):29.

CAS  PubMed  Article  Google Scholar 

Lu G, Nishio N, van den Berg NS, Martin BA, Fakurnejad S, van Keulen S, et al. Co-administered antibody improves penetration of antibody-dye conjugate into human cancers with implications for antibody-drug conjugates. Nat Commun. 2020;11(1):5667.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Singh AP, Guo L, Verma A, Wong GG, Thurber GM, Shah DK. Antibody coadministration as a strategy to overcome binding-site barrier for ADCs: a quantitative investigation. AAPS J. 2020;22(2):28.

PubMed  Article  Google Scholar 

Ponte JF, Lanieri L, Khera E, Laleau R, Ab O, Espelin C, et al. Antibody co-administration can improve systemic and local distribution of antibody-drug conjugates to increase in vivo efficacy. Mol Cancer Ther. 2021;20(1):203–12.

CAS  PubMed  Article  Google Scholar 

Abu-Yousif AO, Cvet D, Gallery M, Bannerman BM, Ganno ML, Smith MD, et al. Preclinical antitumor activity and biodistribution of a novel anti-GCC antibody-drug conjugate in patient-derived xenografts. Mol Cancer Ther. 2020;19(10):2079–88.

CAS  PubMed  Article  Google Scholar 

Bolleddula J, Shah A, Shadid M, Kamali A, Smith MD, Chowdhury SK. Pharmacokinetics and catabolism of [(3)H]TAK-164, a guanylyl cyclase C targeted antibody-drug conjugate. Drug Metab Dispos. 2020;48(11):1239–45.

CAS  PubMed  Article  Google Scholar 

Kovtun YV, Audette CA, Ye Y, Xie H, Ruberti MF, Phinney SJ, et al. Antibody-drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Cancer Res. 2006;66(6):3214–21.

CAS  PubMed  Article  Google Scholar 

Ogitani Y, Hagihara K, Oitate M, Naito H, Agatsuma T. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody-drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci. 2016;107(7):1039–46.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Erickson HK, Park PU, Widdison WC, Kovtun YV, Garrett LM, Hoffman K, et al. Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res. 2006;66(8):4426–33.

CAS  PubMed  Article  Google Scholar 

Erickson HK, Widdison WC, Mayo MF, Whiteman K, Audette C, Wilhelm SD, et al. Tumor delivery and in vivo processing of disulfide-linked and thioether-linked antibody-maytansinoid conjugates. Bioconjug Chem. 2010;21(1):84–92.

CAS  PubMed  Article  Google Scholar 

Khera E, Cilliers C, Bhatnagar S, Thurber GM. Computational transport analysis of antibody-drug conjugate bystander effects and payload tumoral distribution: implications for therapy. Mol Syst Des Eng. 2018;3(1):73–88.

CAS  Article  Google Scholar 

Miller ML, Shizuka M, Wilhelm A, Salomon P, Reid EE, Lanieri L, et al. A DNA-interacting payload designed to eliminate cross-linking improves the therapeutic index of antibody-drug conjugates (ADCs). Mol Cancer Ther. 2018;17(3):650–60.

CAS  PubMed  Article  Google Scholar 

Hamadani M, Radford J, Carlo-Stella C, Caimi PF, Reid E, O’Connor OA, et al. Final results of a phase 1 study of loncastuximab tesirine in relapsed/refractory B-cell non-Hodgkin lymphoma. Blood. 2021;137(19):2634–45.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Krop IE, Beeram M, Modi S, Jones SF, Holden SN, Yu W, et al. Phase I study of trastuzumab-DM1, an HER2 antibody-drug conjugate, given every 3 weeks to patients with HER2-positive metastatic breast cancer. J Clin Oncol. 2010;28(16):2698–704.

CAS  PubMed  Article  Google Scholar 

Bardia A, Mayer IA, Vahdat LT, Tolaney SM, Isakoff SJ, Diamond JR, et al. Sacituzumab Govitecan-hziy in refractory metastatic triple-negative breast cancer. N Engl J Med. 2019;380(8):741–51.

CAS  PubMed  Article  Google Scholar 

Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci. 2012;125(Pt 23):5591–6.

CAS  PubMed  Article  Google Scholar 

Yoshida GJ. Applications of patient-derived tumor xenograft models and tumor organoids. J Hematol Oncol. 2020;13(1):4.

PubMed  PubMed Central  Article  Google Scholar 

Gallery M, Zhang J, Bradley DP, Brauer P, Cvet D, Estevam J, et al. A monomethyl auristatin E-conjugated antibody to guanylyl cyclase C is cytotoxic to target-expressing cells in vitro and in vivo. PLoS One. 2018;13(1):e0191046.

PubMed  PubMed Central  Article  Google Scholar 

Kim RD, Cleary JM, Leal AD, Parikh AR, Ryan DP, Wang S, et al. A phase 1 study of TAK-164, an anti-guanylyl cyclase C (GCC) antibody-drug conjugate (ADC), in patients (pts) with advanced gastrointestinal (GI) cancers expressing GCC. J Clin Oncol. 2021;39(15_suppl):3050-.

Khera E, Cilliers C, Smith MD, Ganno ML, Lai KC, Keating TA, et al. Quantifying ADC bystander payload penetration with cellular resolution using pharmacodynamic mapping. Neoplasia. 2021;23(2):210–21.

CAS  PubMed  Article  Google Scholar 

Vasalou C, Helmlinger G, Gomes B. A mechanistic tumor penetration model to guide antibody drug conjugate design. PLoS ONE. 2015;10(3):e0118977.

PubMed  PubMed Central  Article  Google Scholar 

Singh AP, Shah DK. Measurement and mathematical characterization of cell-level pharmacokinetics of antibody-drug conjugates: a case study with trastuzumab-vc-MMAE. Drug Metab Dispos. 2017;45(11):1120–32.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Singh AP, Shin YG, Shah DK. Application of pharmacokinetic-pharmacodynamic modeling and simulation for antibody-drug conjugate development. Pharm Res. 2015;32(11):3508–25.

CAS  PubMed  Article  Google Scholar 

Sukumaran S, Gadkar K, Zhang C, Bhakta S, Liu L, Xu K, et al. Mechanism-based pharmacokinetic/pharmacodynamic model for THIOMAB drug conjugates. Pharm Res. 2015;32(6):1884–93.

CAS  PubMed  Article  Google Scholar 

Singh AP, Maass KF, Betts AM, Wittrup KD, Kulkarni C, King LE, et al. Evolution of antibody-drug conjugate tumor disposition model to predict preclinical tumor pharmacokinetics of trastuzumab-emtansine (T-DM1). AAPS J. 2016;18(4):861–75.

Burton JK, Bottino D, Secomb TW. A systems pharmacology model for drug delivery to solid tumors by antibody-drug conjugates: implications for bystander effects. AAPS J. 2019;22(1):12.

PubMed  Article 

留言 (0)

沒有登入
gif