Novel channel selection model based on graph convolutional network for motor imagery

Arvaneh M, Guan C, Ang KK et al (2011) Optimizing the channel selection and classification accuracy in EEG-based BCI. IEEE Trans Biomed Eng 58(6):1865–1873. https://doi.org/10.1109/TBME.2011.2131142

Article  PubMed  Google Scholar 

Baig MZ, Aslam N, Shum HPH (2020) Filtering techniques for channel selection in motor imagery EEG applications: a survey. Artif Intell Rev 53(2):1207–1232. https://doi.org/10.1007/s10462-019-09694-8

Article  Google Scholar 

Blankertz B, Muller KR, Krusienski D et al (2006) The BCI competition III: validating alternative approaches to actual BCI problems. IEEE Trans Neural Syst Rehabil Eng 14(2):153–159. https://doi.org/10.1109/TNSRE.2006.875642

Article  PubMed  Google Scholar 

Carrasco DG, Cantalapiedra JA (2016) Effectiveness of motor imagery or mental practice in functional recovery after stroke: a systematic review. Neurología (English Edition) 31(1):43–52. https://doi.org/10.1016/j.nrleng.2013.02.008

Article  Google Scholar 

Chang W, Huang W, Yan G, et al (2021) EEG based graph network analysis for motor imagery task. In: 2021 6th international conference on computational intelligence and applications (ICCIA), pp 185–189. https://doi.org/10.1109/ICCIA52886.2021.00043

Daly I, Nasuto SJ, Warwick K (2012) Brain computer interface control via functional connectivity dynamics. Pattern Recogn 45(6):2123–2136. https://doi.org/10.1016/j.patcog.2011.04.034

Article  Google Scholar 

Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009

Article  PubMed  Google Scholar 

Erb W (2021) Shapes of uncertainty in spectral graph theory. IEEE Trans Inf Theory 67(2):1291–1307. https://doi.org/10.1109/TIT.2020.3039310

Article  Google Scholar 

Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7(2):179–188. https://doi.org/10.1111/j.1469-1809.1936.tb02137.x

Article  Google Scholar 

Friston KJ (1994) Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 2(1–2):56–78. https://doi.org/10.1002/hbm.460020107

Article  Google Scholar 

Frolov AA, Mokienko O, Lyukmanov R et al (2017) Post-stroke rehabilitation training with a motor-imagery-based brain-computer interface (BCI)-controlled hand exoskeleton: A randomized controlled multicenter trial. Front Neurosci 11:400. https://doi.org/10.3389/fnins.2017.00400

Article  PubMed  PubMed Central  Google Scholar 

Garrison KA, Scheinost D, Finn ES et al (2015) The (in)stability of functional brain network measures across thresholds. Neuroimage 118:651–661. https://doi.org/10.1016/j.neuroimage.2015.05.046

Article  PubMed  Google Scholar 

Gaur P, Pachori RB, Wang H, et al (2015) An empirical mode decomposition based filtering method for classification of motor-imagery EEG signals for enhancing brain-computer interface. In: 2015 International joint conference on neural networks (IJCNN), pp 1–7. https://doi.org/10.1109/IJCNN.2015.7280754

Gonuguntla V, Wang Y, Veluvolu KC (2016) Event-related functional network identification: application to EEG classification. IEEE J Sel Top Signal Process 10(7):1284–1294. https://doi.org/10.1109/jstsp.2016.2602007

Article  Google Scholar 

He L, Hu Y, Li Y et al (2013) Channel selection by Rayleigh coefficient maximization based genetic algorithm for classifying single-trial motor imagery EEG. Neurocomputing 121:423–433. https://doi.org/10.1016/j.neucom.2013.05.005

Article  Google Scholar 

Hu S, Wang H, Zhang J, et al (2014) Causality from Cz to C3/C4 or between C3 and C4 revealed by granger causality and new causality during motor imagery. In: 2014 International joint conference on neural networks (IJCNN), pp 3178–3185. https://doi.org/10.1109/IJCNN.2014.6889769

Huang M, Daly I, Jin J et al (2016) An exploration of spatial auditory BCI paradigms with different sounds: music notes versus beeps. Cogn Neurodyn 10(3):201–209. https://doi.org/10.1007/s11571-016-9377-1

Article  PubMed  PubMed Central  Google Scholar 

Huang M, Jin J, Zhang Y et al (2017) Usage of drip drops as stimuli in an auditory p300 BCI paradigm. Cogn Neurodyn 12(1):85–94. https://doi.org/10.1007/s11571-017-9456-y

Article  PubMed  PubMed Central  Google Scholar 

Jin J, Liu C, Daly I et al (2020) Bispectrum-based channel selection for motor imagery based brain-computer interfacing. IEEE Trans Neural Syst Rehabil Eng 28(10):2153–2163. https://doi.org/10.1109/TNSRE.2020.3020975

Article  PubMed  Google Scholar 

Khan MA, Das R, Iversen HK et al (2020) Review on motor imagery based BCI systems for upper limb post-stroke neurorehabilitation: From designing to application. Comput Biol Med 123(103):843. https://doi.org/10.1016/j.compbiomed.2020.103843

Article  Google Scholar 

Kipf T, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv:1609.02907

Lan T, Erdogmus D, Adami A et al (2007) Channel selection and feature projection for cognitive load estimation using ambulatory EEG. Comput Intell Neurosci 074:895. https://doi.org/10.1155/2007/74895

Article  Google Scholar 

Luo C, Li F, Li P et al (2021) A survey of brain network analysis by electroencephalographic signals. Cogn Neurodyn 16(1):17–41. https://doi.org/10.1007/s11571-021-09689-8

Article  PubMed  Google Scholar 

Van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9(11):2579–2605

Google Scholar 

McFarland DJ, Miner LA, Vaughan TM et al (2000) Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topogr 12(3):177–186. https://doi.org/10.1023/A:1023437823106

Article  PubMed  CAS  Google Scholar 

Miao M, Wang A, Liu F (2018) Application of artificial bee colony algorithm in feature optimization for motor imagery EEG classification. Neural Comput Appl 30(12):3677–3691. https://doi.org/10.1007/s00521-017-2950-7

Article  Google Scholar 

Miao Y, Yin E, Allison BZ et al (2019) An ERP-based BCI with peripheral stimuli: validation with ALS patients. Cogn Neurodyn 14(1):21–33. https://doi.org/10.1007/s11571-019-09541-0

Article  PubMed  PubMed Central  Google Scholar 

Mirelman A, Maidan I, Deutsch JE (2013) Virtual reality and motor imagery: Promising tools for assessment and therapy in Parkinson’s disease. Mov Disord 28(11):1597–1608. https://doi.org/10.1002/mds.25670

Article  PubMed  Google Scholar 

Nentwich M, Ai L, Madsen J et al (2020) Functional connectivity of EEG is subject-specific, associated with phenotype, and different from fMRI. Neuroimage 218(117):001. https://doi.org/10.1016/j.neuroimage.2020.117001

Article  Google Scholar 

Pfurtscheller G (2000) Chapter 26 spatiotemporal ERD/ERS patterns during voluntary movement and motor imagery. In: Ambler Z, Nevšímalová S, Kadaňka Z, et al (eds) Clinical neurophysiology at the beginning of the 21st century, supplements to clinical neurophysiology, vol 53. pp 196–198. https://doi.org/10.1016/s1567-424x(09)70157-6

Pfurtscheller G, Lopes da Silva F (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110(11):1842–1857. https://doi.org/10.1016/s1388-2457(99)00141-8

Article  PubMed  CAS  Google Scholar 

Pfurtscheller G, Neuper C (1997) Motor imagery activates primary sensorimotor area in humans. Neurosci Lett 239(2):65–68. https://doi.org/10.1016/s0304-3940(97)00889-6

Article  PubMed  CAS  Google Scholar 

Qiu Z, Jin J, Lam HK et al (2016) Improved SFFS method for channel selection in motor imagery based BCI. Neurocomputing 207:519–527. https://doi.org/10.1016/j.neucom.2016.05.035

Article  Google Scholar 

Ramoser H, Muller-Gerking J, Pfurtscheller G (2000) Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng 8(4):441–446. https://doi.org/10.1109/86.895946

Article  PubMed  CAS  Google Scholar 

Rey D, Neuhäuser M (2011) Wilcoxon-signed-rank test, Springer, Berlin, Heidelberg, pp 1658–1659. https://doi.org/10.1007/978-3-642-04898-2_616

Sargolzaei S, Cabrerizo M, Goryawala M et al (2015) Scalp EEG brain functional connectivity networks in pediatric epilepsy. Comput Biol Med 56:158–166. https://doi.org/10.1016/j.compbiomed.2014.10.018

Article  PubMed  Google Scholar 

Shahid S, Sinha RK, Prasad G (2010) Mu and beta rhythm modulations in motor imagery related post-stroke EEG: a study under BCI framework for post-stroke rehabilitation. BMC Neurosci 11(1):127. https://doi.org/10.1186/1471-2202-11-S1-P127

Article  Google Scholar 

Shuman DI, Narang SK, Frossard P et al (2013) The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process Mag 30(3):83–98. https://doi.org/10.1109/msp.2012.2235192

Article  Google Scholar 

Spielman DA (2007) Spectral graph theory and its applications. In: 48th Annual IEEE symposium on foundations of computer science (FOCS’07), pp 29–38. https://doi.org/10.1109/FOCS.2007.56

Stam CJ, Nolte G, Daffertshofer A (2007) Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp 28(11):1178–1193. https://doi.org/10.1002/hbm.20346

Article  PubMed  PubMed Central  Google Scholar 

Sun H, Jin J, Kong W et al (2020) Novel channel selection method based on position priori weighted permutation entropy and binary gravity search algorithm. Cogn Neurodyn 15(1):141–156. https://doi.org/10.1007/s11571-020-09608-3

Article  PubMed  PubMed Central  Google Scholar 

Tam WK, Ke Z, Tong KY (2011) Performance of common spatial pattern under a smaller set of EEG electrodes in brain-computer interface on chronic stroke patients: A multi-session dataset study. In: 2011 Annual international conference of the ieee engineering in medicine and biology society. IEEE, pp 6344–6347. https://doi.org/10.1109/IEMBS.2011.6091566

Wang Q, Cao T, Liu D et al (2020) A motor-imagery channel-selection method based on SVM-CCA-CS. Meas Sci Technol 32(3):035701. https://doi.org/10.1088/1361-6501/abc205

Article  CAS  Google Scholar 

Wu Z, Pan S, Chen F et al (2021) A comprehensive survey on graph neural networks. IEEE Trans Neural Netw Learn Syst 32(1):4–24. https://doi.org/10.1109/TNNLS.2020.2978386

Article  PubMed  Google Scholar 

Xiao R, Huang Y, Xu R et al (2021) Coefficient-of-variation-based channel selection with a new testing framework for MI-based BCI. Cogn Neurodyn 16(4):791–803. https://doi.org/10.1007/s11571-021-09752-4

Article  PubMed  Google Scholar 

Xu M, Fu P, Liu B et al (2021) Multi-stream attention-aware graph convolution network for video salient object detection. IEEE Trans Image Process 30:4183–4197. https://doi.org/10.1109/TIP.2021.3070200

Article  PubMed  Google Scholar 

Yang Y, Chevallier S, Wiart J et al (2017) Subject-specific time-frequency selection for multi-class motor imagery-based BCIs using few Laplacian EEG channels. Biomed Signal Process Control 38:302–311. https://doi.org/10.1016/j.bspc.2017.06.016

Article  Google Scholar 

Zhang H, Guan C, Ang KK et al (2012) BCI competition IV—data set I: Learning discriminative patterns for self-paced EEG-based motor imagery detection. Front Neurosci 6:7. https://doi.org/10.3389/fnins.2012.00007

Article  PubMed  PubMed Central  Google Scholar 

Zhang X, Jin J, Li S et al (2021) Evaluation of color modulation in visual p300-speller using new stimulus patterns. Cogn Neurodyn 15(5):873–886. https://doi.org/10.1007/s11571-021-09669-y

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif