The Beneficial Clinical Effects of Teriflunomide in Experimental Autoimmune Myasthenia Gravis and the Investigation of the Possible Immunological Mechanisms

Amaldi I, Reith W, Berte C, Mach B (1989) Induction of HLA class II genes by IFN-gamma is transcriptional and requires a trans-acting protein. J Immunol 142:999–1004

PubMed  CAS  Google Scholar 

Bar-Or A, Pachner A, Menguy-Vacheron F, Kaplan J, Wiendl H (2014) Teriflunomide and its mechanism of action in multiple sclerosis. Drugs 74:659–674. https://doi.org/10.1007/s40265-014-0212-x

Article  PubMed  PubMed Central  CAS  Google Scholar 

Bortnick A, Allman D (2013) What is and what should always have been: long-lived plasma cells induced by T cell-independent antigens. J Immunol 190:5913–5918. https://doi.org/10.4049/jimmunol.1300161

Article  PubMed  CAS  Google Scholar 

Carr AS, Cardwell CR, McCarron PO, McConville J (2010) A systematic review of population based epidemiological studies in Myasthenia Gravis. BMC Neurol 10:1–9. https://doi.org/10.1186/1471-2377-10-46

Article  Google Scholar 

Claussen MC, Korn T (2012) Immune mechanisms of new therapeutic strategies in MS- Teriflunomide. Clin Immunol 142:49–56. https://doi.org/10.1016/j.clim.2011.02.011

Article  PubMed  CAS  Google Scholar 

Committee for Medicinal Products for Human Use (CHMP) (2013) Assessment report AUBAGIO, International mon-proprietary name: TERIFLUNOMIDE Procedure No. EMEA/H/C/002514/0000. https://www.ema.europa.eu/documents/assessment-report/aubagio-epar-public-assessment-report_en.pdf. Accessed 27 March 2022

Confavreux C, O’Connor P, Comi G, Freedman MS, Miller AE, Olsson TP, Wolinsky JS, Bagulho T, Delhay JL, Dukovic D, Truffinet P, Kappos L, Group T.T. (2014) Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol 13:247–256. https://doi.org/10.1016/S1474-4422(13)70308-9

Article  PubMed  CAS  Google Scholar 

Dhillon S (2018) A review in generalized myasthenia gravis. Drugs 78(5):607. https://doi.org/10.1007/s40265-018-0889-3

Article  PubMed  PubMed Central  Google Scholar 

Ey PL, Prowse SJ, Jenkin CR (1979) Complement-fixing IgG1 constitutes a new subclass of mouse IgG. Nature 281:492–493. https://doi.org/10.1038/281492a0

Article  PubMed  CAS  Google Scholar 

Fichtner ML, Jiang R, Bourke A, Nowak RJ, O’Connor KC (2020) Autoimmune pathology in myasthenia gravis disease subtypes is governed by divergent mechanisms of immunopathology. Front Immunol 11:e00776. https://doi.org/10.3389/fimmu.2020.00776

Article  CAS  Google Scholar 

Filosso PL, Galassi C, Ruffini E, Margaritora S, Bertolaccini L, Casadio C, Anile M, Venuta F (2013) Thymoma and the increased risk of developing extrathymic malignancies: a multicentre study. Eur J Cardiothorac Surg 44:219–224. https://doi.org/10.1093/ejcts/ezs663 (discussion 224)

Article  PubMed  Google Scholar 

Gandoglia I, Ivaldi F, Laroni A, Benvenuto F, Solaro C, Mancardi G, Kerlero de Rosbo N, Uccelli A (2017) Teriflunomide treatment reduces B cells in patients with MS. Neurol Neuroimmunol Neuroinflamm 4:e403. https://doi.org/10.1212/NXI.0000000000000403

Article  PubMed  PubMed Central  Google Scholar 

Higuchi O, Hamuro J, Motomura M, Yamanashi Y (2011) Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann Neurol 69:418–422. https://doi.org/10.1002/ana.22312

Article  PubMed  CAS  Google Scholar 

Hoch W, McConville J, Helms S, Newsom-Davis J, Melms A, Vincent A (2001) Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat Med 7:365–368. https://doi.org/10.1038/85520

Article  PubMed  CAS  Google Scholar 

Howard JF Jr (2018) Myasthenia gravis: the role of complement at the neuromuscular junction. Ann N Y Acad Sci 1412:113–128. https://doi.org/10.1111/nyas.13522

Article  PubMed  CAS  Google Scholar 

Khodadadi L, Cheng QY, Radbruch A, Hiepe F (2019) The maintenance of memory plasma cells. Front Immunol 10:721. https://doi.org/10.3389/fimmu.2019.00721

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lefvert AK, Cuenoud S, Fulpius BW (1981) Binding-properties and subclass distribution of anti-acetylcholine Receptor antibodies in myasthenia-gravis. J Neuroimmunol 1:125–135. https://doi.org/10.1016/0165-5728(81)90015-1

Article  PubMed  CAS  Google Scholar 

Li L, Liu JC, Delohery T, Zhang DH, Arendt C, Jones C (2013) The effects of teriflunomide on lymphocyte subpopulations in human peripheral blood mononuclear cells in vitro. J Neuroimmunol 265:82–90. https://doi.org/10.1016/j.jneuroim.2013.10.003

Article  PubMed  CAS  Google Scholar 

Loffler M, Klein A, Hayek-Ouassini M, Knecht W, Konrad L (2004) Dihydroorotate dehydrogenase mRNA and protein expression analysis in normal and drug-resistant cells. Nucleosides Nucleotides Nucleic Acids 23:1281–1285. https://doi.org/10.1081/NCN-200027547

Article  PubMed  CAS  Google Scholar 

Mantegazza R, Cordiglieri C, Consonni A, Baggi F (2016) Animal models of myasthenia gravis: utility and limitations. Int J Gen Med 9:53–64. https://doi.org/10.2147/IJGM.S88552

Article  PubMed  PubMed Central  CAS  Google Scholar 

McConville J, Farrugia ME, Beeson D, Kishore U, Metcalfe R, Newsom-Davis J, Vincent A (2004) Detection and characterization of MuSK antibodies in seronegative myasthenia gravis. Ann Neurol 55:580–584. https://doi.org/10.1002/ana.20061

Article  PubMed  CAS  Google Scholar 

Moens L, Tangye SG (2014) Cytokine-mediated regulation of plasma cell generation: IL-21 takes center stage. Front Immunol 5:65. https://doi.org/10.3389/fimmu.2014.00065

Article  PubMed  PubMed Central  CAS  Google Scholar 

Nutt SL, Hodgkin PD, Tarlinton DM, Corcoran LM (2015) The generation of antibody-secreting plasma cells. Nat Rev Immunol 15:160–171. https://doi.org/10.1038/nri3795

Article  PubMed  CAS  Google Scholar 

O’Connor P, Wolinsky JS, Confavreux C, Comi G, Kappos L, Olsson TP, Benzerdjeb H, Truffinet P, Wang L, Miller A, Freedman MS (2011) Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N Engl J Med 365:1293–1303. https://doi.org/10.1056/NEJMoa1014656

Article  PubMed  CAS  Google Scholar 

Posevitz V, Chudyka D, Kurth F, Wiendl H (2012) Teriflunomide suppresses antigen induced T-cell expansion in a TCR avidity dependent fashion. Mult Scler J 18:519–519. https://doi.org/10.1126/scitranslmed.aao5563

Article  CAS  Google Scholar 

Ringshausen I, Oelsner M, Bogner C, Peschel C, Decker T (2008) The immunomodulatory drug Leflunomide inhibits cell cycle progression of B-CLL cells. Leukemia 22:635–638. https://doi.org/10.1038/sj.leu.2404922

Article  PubMed  CAS  Google Scholar 

Rodgaard A, Nielsen FC, Djurup R, Somnier F, Gammeltoft S (1987) Acetylcholine-Receptor Antibody in Myasthenia-Gravis—Predominance of Igg Subclass-1 and Subclass-3. Clin Exp Immunol 67:82–88

PubMed  PubMed Central  CAS  Google Scholar 

Ruckemann K, Fairbanks LD, Carrey EA, Hawrylowicz CM, Richards DF, Kirschbaum B, Simmonds HA (1998) Leflunomide inhibits pyrimidine de novo synthesis in mitogen-stimulated T-lymphocytes from healthy humans. J Biol Chem 273:21682–21691. https://doi.org/10.1074/jbc.273.34.21682

Article  PubMed  CAS  Google Scholar 

Shigemoto K, Takashima R, Motohashi N, Mori S (2015) Animal models of myasthenia gravis. Nihon Rinsho 73(Suppl 7):97–104. https://doi.org/10.1006/clim.1999.4807

Article  PubMed  Google Scholar 

Siemasko K, Chong AS-F, Williams JW, Bremer EG, Finnegan A (1996) Regulation of B cell function by the immunosupressive agent leflunomide. Transplantation 61:635–642. https://doi.org/10.1097/00007890-199602270-00020

Article  PubMed  CAS  Google Scholar 

Siemasko K, Chong AS-F, Jack HM, Gong H, Williams JW, Finnegan A (1998) Inhibition oj JAK3 and STAT6 tyrosine phosphorylation by the immunosupressive drug leflunomide leads to a block in IgG1 production. J Immunol 160:1581–1588

PubMed  CAS  Google Scholar 

Silvestri NJ, Wolfe GI (2014) Treatment-refractory myasthenia gravis. J Clin Neuromuscul Dis 15:167–178. https://doi.org/10.1097/CND.0000000000000034

Article  PubMed  Google Scholar 

Sonkar KK, Bhoi SK, Dubey D, Kalita J, Misra UK (2017) Direct and indirect cost of myasthenia gravis: a prospective study from a tertiary care teaching hospital in India. J Clin Neurosci 38:114–117. https://doi.org/10.1016/j.jocn.2016.11.003

Article  PubMed  Google Scholar 

Stathopoulos P, Kumar A, Nowak RJ, O’Connor KC (2017) Autoantibody-producing plasmablasts after B cell depletion identified in muscle-specific kinase myasthenia gravis. JCI Insight 2:94263. https://doi.org/10.1172/jci.insight.94263

Article  PubMed  Google Scholar 

Tilly G, Cadoux M, Garcia A, Morille J, Wiertlewski S, Pecqueur C, Brouard S, Laplaud D, Degauque N (2021) Teriflunomide treatment of multiple sclerosis selectively modulates CD8 memory T cells. Front Immunol 12:730342. https://doi.org/10.3389/fimmu.2021.730342

Article  PubMed  PubMed Central  CAS  Google Scholar 

Tuzun E, Berrih-Aknin S, Brenner T, Kusner LL, Le Panse R, Yang H, Tzartos S, Christadoss P (2015) Guidelines for standard preclinical experiments in the mouse model of myasthenia gravis induced by acetylcholine receptor immunization. Exp Neurol 270:11–17. https://doi.org/10.1016/j.expneurol.2015.02.009

Article  PubMed  CAS  Google Scholar 

Ulusoy C, Cavus F, Yilmaz V, Tuzun E (2017) Immunization with recombinantly expressed LRP4 induces experimental autoimmune myasthenia gravis in C57BL/6 mice. Immunol Invest 46:490–499. https://doi.org/10.1080/08820139.2017.1299754

Article  PubMed  CAS  Google Scholar 

留言 (0)

沒有登入
gif