Early Signs of Neuroinflammation in the Postnatal Wobbler Mouse Model of Amyotrophic Lateral Sclerosis

Ait-Ikhlef A, Hantaz-Ambroise D, Jacque C, Belkadi L, Rieger F (1999) Astrocyte proliferation induced by wobbler astrocyte conditioned medium is blocked by tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) neutralizing antibodies in vitro. Cell Mol Biol (noisy-Le-Grand) 45(4):393–400

CAS  Google Scholar 

Augustin M, Heimann P, Rathke S, Jockusch H (1997) Spinal muscular atrophy gene wobbler of the mouse: evidence from chimeric spinal cord and testis for cell-autonomous function. Dev Dyn 209(3):286–295. https://doi.org/10.1002/(SICI)1097-0177(199707)209:3%3c286

Article  PubMed  CAS  Google Scholar 

Beers DR, Appel SH (2019) Immune dysregulation in amyotrophic lateral sclerosis: mechanisms and emerging therapies. Lancet Neurol 18(2):211–220. https://doi.org/10.1016/S1474-4422(18)30394-6

Article  PubMed  CAS  Google Scholar 

Bensimon G, Ludolph A, Agid Y, Vidailhet M, Payan C, Leigh PN, Group NS (2009) Riluzole treatment, survival and diagnostic criteria in Parkinson plus disorders: the NNIPPS study. Brain 132(Pt 1):156–171. https://doi.org/10.1093/brain/awn291

Article  Google Scholar 

Blondet B, Hantaz-Ambroise D, Ait-Ikhlef A, Cambier D, Murawsky M, Rieger F (1995) Astrocytosis in wobbler mouse spinal cord involves a population of astrocytes which is glutamine synthetase-negative. Neurosci Lett 183(3):179–182

Article  CAS  Google Scholar 

Blondet B, Carpentier G, Ait-Ikhlef A, Murawsky M, Rieger F (2002) Motoneuron morphological alterations before and after the onset of the disease in the wobbler mouse. Brain Res 930(1–2):53–57. https://doi.org/10.1016/s0006-8993(01)03405-9

Article  PubMed  CAS  Google Scholar 

Boillee S, Viala L, Peschanski M, Dreyfus PA (2001) Differential microglial response to progressive neurodegeneration in the murine mutant Wobbler. Glia 33(4):277–287

Article  CAS  Google Scholar 

Boillee S, Peschanski M, Junier MP (2003) The wobbler mouse: a neurodegeneration jigsaw puzzle. Mol Neurobiol 28(1):65–106. https://doi.org/10.1385/MN:28:1:65

Article  PubMed  CAS  Google Scholar 

Brenner D, Freischmidt A (2022) Update on genetics of amyotrophic lateral sclerosis. Curr Opin Neurol 35(5):672–677. https://doi.org/10.1097/WCO.0000000000001093

Article  PubMed  CAS  Google Scholar 

Brettschneider J, Toledo JB, Van Deerlin VM, Elman L, McCluskey L, Lee VM, Trojanowski JQ (2012) Microglial activation correlates with disease progression and upper motor neuron clinical symptoms in amyotrophic lateral sclerosis. PLoS ONE. https://doi.org/10.1371/journal.pone.0039216

Article  PubMed  PubMed Central  Google Scholar 

Cihankaya H, Theiss C, Matschke V (2021) Little helpers or mean rogue-role of microglia in animal models of amyotrophic lateral sclerosis. Int J Mol Sci. https://doi.org/10.3390/ijms22030993

Article  PubMed  PubMed Central  Google Scholar 

Crain JM, Nikodemova M, Watters JJ (2013) Microglia express distinct M1 and M2 phenotypic markers in the postnatal and adult central nervous system in male and female mice. J Neurosci Res 91(9):1143–1151. https://doi.org/10.1002/jnr.23242

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dahlke C, Saberi D, Ott B, Brand-Saberi B, Schmitt-John T, Theiss C (2015) Inflammation and neuronal death in the motor cortex of the wobbler mouse, an ALS animal model. J Neuroinflammation 12:215. https://doi.org/10.1186/s12974-015-0435-0

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dave KR, Bradley WG, Perez-Pinzon MA (2003) Early mitochondrial dysfunction occurs in motor cortex and spinal cord at the onset of disease in the Wobbler mouse. Exp Neurol 182(2):412–420. https://doi.org/10.1016/s0014-4886(03)00091-8

Article  PubMed  CAS  Google Scholar 

De Nicola AF, Coronel F, Garay LI, Gargiulo-Monachelli G, Gonzalez Deniselle MC, Gonzalez SL, Labombarda F, Meyer M, Guennoun R, Schumacher M (2013) Therapeutic effects of progesterone in animal models of neurological disorders. CNS Neurol Disord: Drug Targets 12(8):1205–1218

Google Scholar 

De Nicola AF, Meyer M, Guennoun R, Schumacher M, Hunt H, Belanoff J, de Kloet ER, Gonzalez Deniselle MC (2020) Insights into the therapeutic potential of glucocorticoid receptor modulators for neurodegenerative diseases. Int J Mol Sci 21(6):10. https://doi.org/10.3390/ijms21062137

Article  CAS  Google Scholar 

De Paola M, Mariani A, Bigini P, Peviani M, Ferrara G, Molteni M, Gemma S, Veglianese P, Castellaneta V, Boldrin V, Rossetti C, Chiabrando C, Forloni G, Mennini T, Fanelli R (2012) Neuroprotective effects of toll-like receptor 4 antagonism in spinal cord cultures and in a mouse model of motor neuron degeneration. Mol Med 18:971–981. https://doi.org/10.2119/molmed.2012.00020

Article  PubMed  PubMed Central  CAS  Google Scholar 

Diana V, Ottolina A, Botti F, Fumagalli E, Calcagno E, De Paola M, Cagnotto A, Invernici G, Parati E, Curti D, Mennini T (2010) Neural precursor-derived astrocytes of wobbler mice induce apoptotic death of motor neurons through reduced glutamate uptake. Exp Neurol 225(1):163–172. https://doi.org/10.1016/j.expneurol.2010.06.008

Article  PubMed  CAS  Google Scholar 

Dockery P, Tang Y, Morais M, Vacca-Galloway LL (1997) Neuron volume in the ventral horn in Wobbler mouse motoneuron disease: a light microscope stereological study. J Anat 191(Pt 1):89–98. https://doi.org/10.1046/j.1469-7580.1997.19110089.x

Article  PubMed  PubMed Central  Google Scholar 

Duchen LW, Strich SJ (1968) An hereditary motor neurone disease with progressive denervation of muscle in the mouse: the mutant “wobbler.” J Neurol Neurosurg Psychiatry 31(6):535–542. https://doi.org/10.1136/jnnp.31.6.535

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dukkipati SS, Garrett TL, Elbasiouny SM (2018) The vulnerability of spinal motoneurons and soma size plasticity in a mouse model of amyotrophic lateral sclerosis. J Physiol 596(9):1723–1745. https://doi.org/10.1113/JP275498

Article  PubMed  PubMed Central  CAS  Google Scholar 

Filipi T, Hermanova Z, Tureckova J, Vanatko O, Anderova AM (2020) Glial cells-the strategic targets in amyotrophic lateral sclerosis treatment. J Clin Med. https://doi.org/10.3390/jcm9010261

Article  PubMed  PubMed Central  Google Scholar 

Frank-Cannon TC, Alto LT, McAlpine FE, Tansey MG (2009) Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener 4:47. https://doi.org/10.1186/1750-1326-4-47

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC (2018) Neuronal cell death. Physiol Rev 98(2):813–880. https://doi.org/10.1152/physrev.00011.2017

Article  PubMed  PubMed Central  CAS  Google Scholar 

Friese A, Kaltschmidt JA, Ladle DR, Sigrist M, Jessell TM, Arber S (2009) Gamma and alpha motor neurons distinguished by expression of transcription factor Err3. Proc Natl Acad Sci USA 106(32):13588–13593. https://doi.org/10.1073/pnas.0906809106

Article  PubMed  PubMed Central  Google Scholar 

Garay LI, Gonzalez Deniselle MC, Brocca ME, Lima A, Roig P, De Nicola AF (2012) Progesterone down-regulates spinal cord inflammatory mediators and increases myelination in experimental autoimmune encephalomyelitis. Neuroscience 226:40–50. https://doi.org/10.1016/j.neuroscience.2012.09.032

Article  PubMed  CAS  Google Scholar 

Gargiulo-Monachelli G, Meyer M, Lara A, Garay L, Lima A, Roig P, De Nicola AF, Gonzalez Deniselle MC (2019) Comparative effects of progesterone and the synthetic progestin norethindrone on neuroprotection in a model of spontaneous motoneuron degeneration. J Steroid Biochem Mol Biol. https://doi.org/10.1016/j.jsbmb.2019.105385

Article  PubMed  Google Scholar 

Gibson SB, Figueroa KP, Bromberg MB, Pulst SM, Cannon-Albright L (2014) Familial clustering of ALS in a population-based resource. Neurology 82(1):17–22. https://doi.org/10.1212/01.wnl.0000438219.39061.da

Article  PubMed  PubMed Central  Google Scholar 

Gonzalez Deniselle MC, Lopez-Costa JJ, Saavedra JP, Pietranera L, Gonzalez SL, Garay L, Guennoun R, Schumacher M, De Nicola AF (2002) Progesterone neuroprotection in the Wobbler mouse, a genetic model of spinal cord motor neuron disease. Neurobiol Dis 11(3):457–468

Article  CAS  Google Scholar 

Gonzalez Deniselle MC, Garay L, Lopez-Costa JJ, Gonzalez S, Mougel A, Guennoun R, Schumacher M, De Nicola AF (2004) Progesterone treatment reduces NADPH-diaphorase/nitric oxide synthase in Wobbler mouse motoneuron disease. Brain Res 1014(1–2):71–79. https://doi.org/10.1016/j.brainres.2004.04.004

Article  PubMed  CAS  Google Scholar 

Gonzalez Deniselle MC, Garay L, Gonzalez S, Saravia F, Labombarda F, Guennoun R, Schumacher M, De Nicola AF (2007) Progesterone modulates brain-derived neurotrophic factor and choline acetyltransferase in degenerating Wobbler motoneurons. Exp Neurol 203(2):406–414. https://doi.org/10.1016/j.expneurol.2006.08.019

Article  PubMed  CAS  Google Scholar 

Gonzalez Deniselle MC, Carreras MC, Garay L, Gargiulo-Monachelli G, Meyer M, Poderoso JJ, De Nicola AF (2012) Progesterone prevents mitochondrial dysfunction in the spinal cord of wobbler mice. J Neurochem 122(1):185–195. https://doi.org/10.1111/j.1471-4159.2012.07753.x

Article  PubMed  CAS  Google Scholar 

Hall ED, Andrus PK, Oostveen JA, Fleck TJ, Gurney ME (1998) Relationship of oxygen radical-induced lipid peroxidative damage to disease onset and progression in a transgenic model of familial ALS. J Neurosci Res 53(1):66–77. https://doi.org/10.1002/(SICI)1097-4547(19980701)53:1%3c66::AID-JNR7%3e3.0.CO;2-H

Article  PubMed  CAS  Google Scholar 

Hantaz-Ambroise D, Jacque C, Ait Ikhlef A, Parmentier C, Leclerc P, Cambier D, Zadigue G, Rieger F (2001) Specific features of chronic astrocyte gliosis after experimental central nervous system (CNS) xenografting and in Wobbler neurological mutant CNS. Differentiation 69(2–3):100–107

Article  CAS  Google Scholar 

Julien JP, Kriz J (2006) Transgenic mouse models of amyotrophic lateral sclerosis. Biochem Biophys Acta 1762(11–12):1013–1024. https://doi.org/10.1016/j.bbadis.2006.03.006

Article  PubMed 

留言 (0)

沒有登入
gif