Early GLS changes detection after chemoradiation in locally advanced non-small cell lung cancer (NSCLC)

Gray JE, Villegas A, Daniel D et al (2020) Three-year overall survival with durvalumab after chemoradiotherapy in stage III NSCLC—Update from PACIFIC. J Thorac Oncol 15:288–293. https://doi.org/10.1016/j.jtho.2019.10.002

CAS  Article  PubMed  Google Scholar 

Bradley JD, Hu C, Komaki RR et al (2020) Long-term results of NRG oncology RTOG 0617: standard- versus high-dose chemoradiotherapy with or without cetuximab for unresectable stage III non–small-cell lung cancer. JCO 38:706–714. https://doi.org/10.1200/JCO.19.01162

CAS  Article  Google Scholar 

Lancellotti P, Nkomo VT, Badano LP et al (2013) Expert consensus for multi-modality imaging evaluation of cardiovascular complications of radiotherapy in adults: a report from the European association of cardiovascular imaging and the American society of echocardiography. J Am Soc Echocardiogr 26:1013–1032. https://doi.org/10.1016/j.echo.2013.07.005

Article  PubMed  Google Scholar 

Degens J, De Ruysscher D, Houben R et al (2020) Are patients with stage III non-small cell lung cancer treated with chemoradiotherapy at risk for cardiac events? Results from a retrospective cohort study. BMJ Open 10:e036492. https://doi.org/10.1136/bmjopen-2019-036492

Article  PubMed  PubMed Central  Google Scholar 

Evangelista A, Flachskampf F, Lancellotti P et al (2008) European Association of Echocardiography recommendations for standardization of performance, digital storage and reporting of echocardiographic studies. Eur J Echocardiogr 9:438–448. https://doi.org/10.1093/ejechocard/jen174

Article  PubMed  Google Scholar 

Erven K, Jurcut R, Weltens C et al (2011) Acute radiation effects on cardiac function detected by strain rate imaging in breast cancer patients. Int J Radiation Oncol Biol Phys 79:1444–1451. https://doi.org/10.1016/j.ijrobp.2010.01.004

Article  Google Scholar 

Lo Q, Hee L, Batumalai V et al (2015) Subclinical cardiac dysfunction detected by strain imaging during breast irradiation with persistent changes 6 weeks after treatment. Int J Radiation Oncol Biol Phys 92:268–276. https://doi.org/10.1016/j.ijrobp.2014.11.016

Article  Google Scholar 

Tuohinen SS, Skyttä T, Poutanen T et al (2017) Radiotherapy-induced global and regional differences in early-stage left-sided versus right-sided breast cancer patients: speckle tracking echocardiography study. Int J Cardiovasc Imaging 33:463–472. https://doi.org/10.1007/s10554-016-1021-y

Article  PubMed  Google Scholar 

Al-Kindi SG, Oliveira GH (2016) Incidence and trends of cardiovascular mortality after common cancers in young adults: Analysis of surveillance, epidemiology and end-results program. WJC 8:368. https://doi.org/10.4330/wjc.v8.i6.368

Article  PubMed  PubMed Central  Google Scholar 

Underberg RWM, Lagerwaard FJ, Slotman BJ et al (2005) Benefit of respiration-gated stereotactic radiotherapy for stage I lung cancer: An analysis of 4DCT datasets. Int J Radiation Oncol Biol Phys 62:554–560. https://doi.org/10.1016/j.ijrobp.2005.01.032

Article  Google Scholar 

Chen L, Huang J, Wu W et al (2019) The impact of right ventricular function on prognosis in patients with stage III non-small cell lung cancer after concurrent chemoradiotherapy. Int J Cardiovasc Imaging 35:1009–1017. https://doi.org/10.1007/s10554-019-01590-0

CAS  Article  PubMed  Google Scholar 

Chen L, Ta S, Wu W et al (2019) Prognostic and added value of echocardiographic strain for prediction of adverse outcomes in patients with locally advanced non-small cell lung cancer after radiotherapy. Ultrasound Med Biol 45:98–107. https://doi.org/10.1016/j.ultrasmedbio.2018.09.012

Article  PubMed  Google Scholar 

Gupta A, Lawrence AT, Krishnan K et al (2007) Current concepts in the mechanisms and management of drug-induced QT prolongation and torsade de pointes. Am Heart J 153:891–899. https://doi.org/10.1016/j.ahj.2007.01.040

Article  PubMed  Google Scholar 

Wenzel-Seifert K, Wittmann M, Haen E (2011) QTc prolongation by psychotropic drugs and the risk of Torsade de Pointes. Dtsch Arztebl Int 108:687–693. https://doi.org/10.3238/arztebl.2011.0687

Article  PubMed  PubMed Central  Google Scholar 

Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 16:233–270. https://doi.org/10.1093/ehjci/jev014

Article  PubMed  Google Scholar 

Mor-Avi V, Lang RM, Badano LP et al (2011) Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. Eur J Echocardiogr 12:167–205. https://doi.org/10.1093/ejechocard/jer021

Article  PubMed  Google Scholar 

Zamorano JL, Lancellotti P, Rodriguez Muñoz D et al (2016) 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J 37:2768–2801. https://doi.org/10.1093/eurheartj/ehw211

Article  PubMed  Google Scholar 

Plana JC, Galderisi M, Barac A et al (2014) Expert consensus for multimodality imaging evaluation of adult patients during and after cancer therapy: a report from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 15:1063–1093. https://doi.org/10.1093/ehjci/jeu192

Article  PubMed  PubMed Central  Google Scholar 

Čelutkienė J, Pudil R, López-Fernández T et al (2020) Role of cardiovascular imaging in cancer patients receiving cardiotoxic therapies: a position statement on behalf of the H eart F ailure A ssociation (HFA), the E uropean A ssociation of C ardiovascular I maging (EACVI) and the Cardio-Oncology C ouncil of the E uropean S ociety of C ardiology (ESC). Eur J Heart Fail 22:1504–1524. https://doi.org/10.1002/ejhf.1957

CAS  Article  PubMed  Google Scholar 

Goff DC, Lloyd-Jones DM, Bennett G et al (2014) 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. Circulation. https://doi.org/10.1161/01.cir.0000437741.48606.98

Article  PubMed  PubMed Central  Google Scholar 

Edvardsen T, Helle-Valle T, Smiseth OA (2006) Systolic dysfunction in heart failure with normal ejection fraction: speckle-tracking echocardiography. Prog Cardiovasc Dis 49:207–214. https://doi.org/10.1016/j.pcad.2006.08.008

Article  PubMed  Google Scholar 

Armenian SH, Hudson MM, Mulder RL et al (2015) Recommendations for cardiomyopathy surveillance for survivors of childhood cancer: a report from the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol 16:e123–e136. https://doi.org/10.1016/S1470-2045(14)70409-7

Article  PubMed  PubMed Central  Google Scholar 

Sawaya H, Sebag IA, Plana JC et al (2012) Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ Cardiovasc Imaging 5:596–603. https://doi.org/10.1161/CIRCIMAGING.112.973321

Article  PubMed  PubMed Central  Google Scholar 

Negishi K, Negishi T, Hare JL et al (2013) Independent and incremental value of deformation indices for prediction of Trastuzumab-induced cardiotoxicity. J Am Soc Echocardiogr 26:493–498. https://doi.org/10.1016/j.echo.2013.02.008

Article  PubMed  Google Scholar 

Thavendiranathan P, Poulin F, Lim K-D et al (2014) Use of myocardial strain imaging by echocardiography for the early detection of cardiotoxicity in patients during and after cancer chemotherapy. J Am Coll Cardiol 63:2751–2768. https://doi.org/10.1016/j.jacc.2014.01.073

Article  PubMed  Google Scholar 

Ersbøll M, Valeur N, Mogensen UM et al (2013) Prediction of all-cause mortality and heart failure admissions from global left ventricular longitudinal strain in patients with acute myocardial infarction and preserved left ventricular ejection fraction. J Am Coll Cardiol 61:2365–2373. https://doi.org/10.1016/j.jacc.2013.02.061

Article  PubMed  Google Scholar 

Yingchoncharoen T, Gibby C, Rodriguez LL et al (2012) Association of myocardial deformation with outcome in asymptomatic aortic stenosis with normal ejection fraction. Circ Cardiovasc Imag 5:719–725. https://doi.org/10.1161/CIRCIMAGING.112.977348

Article  Google Scholar 

Nagata Y, Takeuchi M, Wu VC-C et al (2015) Prognostic value of LV deformation parameters using 2D and 3D speckle-tracking echocardiography in asymptomatic patients with severe aortic stenosis and preserved LV ejection fraction. JACC Cardiovasc Imaging 8:235–245. https://doi.org/10.1016/j.jcmg.2014.12.009

Article  PubMed  Google Scholar 

Tsai H-R, Gjesdal O, Wethal T et al (2011) Left ventricular function assessed by two-dimensional speckle tracking echocardiography in long-term survivors of Hodgkin’s lymphoma treated by mediastinal radiotherapy with or without anthracycline therapy. Am J Cardiol 107:472–477. https://doi.org/10.1016/j.amjcard.2010.09.048

Article  PubMed  Google Scholar 

Jurcut R, Ector J, Erven K et al (2007) Radiotherapy effects on systolic myocardial function detected by strain rate imaging in a left-breast cancer patient. Eur Heart J 28:2966. https://doi.org/10.1093/eurheartj/ehm311

Article  PubMed  Google Scholar 

Trivedi SJ, Choudhary P, Lo Q et al (2019) Persistent reduction in global longitudinal strain in the longer term after radiation therapy in patients with breast cancer. Radiother Oncol 132:148–154. https://doi.org/10.1016/j.radonc.2018.10.023

Article  PubMed  Google Scholar 

Ghobadi G, van der Veen S, Bartelds B et al (2012) Physiological Interaction of Heart and Lung in Thoracic Irradiation. Int J Radiation Oncol Biol Phys 84:e639–e646. https://doi.org/10.1016/j.ijrobp.2012.07.2362

Article  Google Scholar 

Heggemann F, Grotz H, Welzel G et al (2015) Cardiac function after multimodal breast cancer therapy assessed with functional magnetic resonance imaging and echocardiography imaging. Int J Radiation Oncol Biol Phys 93:836–844. https://doi.org/10.1016/j.ijrobp.2015.07.2287

Article  Google Scholar 

Sritharan HP, Delaney GP, Lo Q et al (2017) Evaluation of traditional and novel echocardiographic methods of cardiac diastolic dysfunction post radiotherapy in breast cancer. Int J Cardiol 243:204–208. https://doi.org/10.1016/j.ijcard.2017.05.007

Article  PubMed  Google Scholar 

Lo Q, Hee L, Batumalai V et al (2017) Strain imaging detects dose-dependent segmental cardiac dysfunction in the acute phase after breast irradiation. Int J Radiation Oncol Biol Phys 99:182–190. https://doi.org/10.1016/j.ijrobp.2017.05.030

Article  Google Scholar 

Tuohinen SS, Skytta T, Huhtala H et al (2019) Left ventricular speckle tracking echocardiography changes among early-stage breast cancer patients three years after radiotherapy. Anticancer Res 39:4227–4236. https://doi.org/10.21873/anticanres.13584

CAS  Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif