Sorafenib decreases glycemia by impairing hepatic glucose metabolism

B. Escudier, F. Worden, M. Kudo, Sorafenib: key lessons from over 10 years of experience. Expert Rev. Anticancer Ther. 19(2), 177–189 (2019)

CAS  PubMed  Article  Google Scholar 

L. Liu, Y. Cao, C. Chen, X. Zhang, A. McNabola, D. Wilkie et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 66(24), 11851–11858 (2006)

CAS  PubMed  Article  Google Scholar 

B. Escudier, T. Eisen, W.M. Stadler, C. Szczylik, S. Oudard, M. Siebels et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 356(2), 125–134 (2007)

CAS  PubMed  Article  Google Scholar 

J.M. Llovet, S. Ricci, V. Mazzaferro, P. Hilgard, E. Gane, J.F. Blanc et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 359(4), 378–390 (2008)

CAS  PubMed  Article  Google Scholar 

P. Fallahi, S.M. Ferrari, F. Santini, A. Corrado, G. Materazzi, S. Ulisse et al. Sorafenib and thyroid cancer. BioDrugs 27(6), 615–628 (2013)

CAS  PubMed  Article  Google Scholar 

J.T. Hartmann, M. Haap, H.G. Kopp, H.P. Lipp, Tyrosine kinase inhibitors - a review on pharmacology, metabolism and side effects. Curr. Drug Metab. 10(5), 470–481 (2009)

CAS  PubMed  Article  Google Scholar 

K.I. Fujita, H. Ishida, Y. Kubota, Y. Sasaki, Toxicities of Receptor Tyrosine Kinase Inhibitors in Cancer Pharmacotherapy: Management with Clinical Pharmacology. Curr. Drug Metab. 18(3), 186–198 (2017)

CAS  PubMed  Article  Google Scholar 

N.M. Agostino, V.M. Chinchilli, C.J. Lynch, A. Koszyk-Szewczyk, R. Gingrich, J. Sivik et al. Effect of the tyrosine kinase inhibitors (sunitinib, sorafenib, dasatinib, and imatinib) on blood glucose levels in diabetic and nondiabetic patients in general clinical practice. J. Oncol. Pharm. Pract. 17(3), 197–202 (2011)

CAS  PubMed  Article  Google Scholar 

D. Veneri, M. Franchini, E. Bonora, Imatinib and regression of type 2 diabetes. N. Engl. J. Med. 352(10), 1049–1050 (2005)

CAS  PubMed  Article  Google Scholar 

M. Breccia, M. Muscaritoli, Z. Aversa, F. Mandelli, G. Alimena, Imatinib mesylate may improve fasting blood glucose in diabetic Ph+ chronic myelogenous leukemia patients responsive to treatment. J. Clin. Oncol. 22(22), 4653–4655 (2004)

CAS  PubMed  Article  Google Scholar 

B. Billemont, J. Medioni, L. Taillade, D. Helley, J.B. Meric, O. Rixe et al. Blood glucose levels in patients with metastatic renal cell carcinoma treated with sunitinib. Br. J. Cancer 99(9), 1380–1382 (2008)

CAS  PubMed  PubMed Central  Article  Google Scholar 

A. Templeton, M. Brändle, T. Cerny, S. Gillessen, Remission of diabetes while on sunitinib treatment for renal cell carcinoma. Ann. Oncol. 19(4), 824–825 (2008)

CAS  PubMed  Article  Google Scholar 

M. Breccia, M. Muscaritoli, L. Cannella, C. Stefanizzi, A. Frustaci, G. Alimena, Fasting glucose improvement under dasatinib treatment in an accelerated phase chronic myeloid leukemia patient unresponsive to imatinib and nilotinib. Leuk. Res. 32(10), 1626–1628 (2008)

CAS  PubMed  Article  Google Scholar 

R. Malek, S.N. Davis, Tyrosine kinase inhibitors under investigation for the treatment of type II diabetes. Expert Opin. Investig. Drugs 25(3), 287–296 (2016)

CAS  PubMed  Article  Google Scholar 

M.S. Han, K.W. Chung, H.G. Cheon, S.D. Rhee, C.H. Yoon, M.K. Lee et al. Imatinib mesylate reduces endoplasmic reticulum stress and induces remission of diabetes in db/db mice. Diabetes 58(2), 329–336 (2009)

CAS  PubMed  PubMed Central  Article  Google Scholar 

R. Hägerkvist, S. Sandler, D. Mokhtari, N. Welsh, Amelioration of diabetes by imatinib mesylate (Gleevec): role of beta-cell NF-kappaB activation and anti-apoptotic preconditioning. FASEB J. 21(2), 618–628 (2007)

PubMed  Article  Google Scholar 

D. Mokhtari, N. Welsh, Potential utility of small tyrosine kinase inhibitors in the treatment of diabetes. Clin. Sci. (Lond. Engl.: 1979) 118(4), 241–247 (2009)

Article  Google Scholar 

C. Louvet, G.L. Szot, J. Lang, M.R. Lee, N. Martinier, G. Bollag et al. Tyrosine kinase inhibitors reverse type 1 diabetes in nonobese diabetic mice. Proc. Natl Acad. Sci. USA 105(48), 18895–18900 (2008)

CAS  PubMed  PubMed Central  Article  Google Scholar 

B.M. Duggan, J.F. Cavallari, K.P. Foley, N.G. Barra, J.D. Schertzer, RIPK2 Dictates Insulin Responses to Tyrosine Kinase Inhibitors in Obese Male Mice. Endocrinology 161(8), bqaa086 (2020).

J.E. Gerich, Physiology of glucose homeostasis. Diabetes Obes. Metab. 2(6), 345–350 (2000)

CAS  PubMed  Article  Google Scholar 

M. Roden, G.I. Shulman, The integrative biology of type 2 diabetes. Nature 576(7785), 51–60 (2019)

CAS  PubMed  Article  Google Scholar 

P.V. Röder, B. Wu, Y. Liu, W. Han, Pancreatic regulation of glucose homeostasis. Exp. Mol. Med. 48(3), e219 (2016)

PubMed  PubMed Central  Article  Google Scholar 

F.C. Schuit, P. Huypens, H. Heimberg, D.G. Pipeleers, Glucose sensing in pancreatic beta-cells: a model for the study of other glucose-regulated cells in gut, pancreas, and hypothalamus. Diabetes 50(1), 1–11 (2001)

CAS  PubMed  Article  Google Scholar 

M. Alsahli, J.E. Gerich, Renal glucose metabolism in normal physiological conditions and in diabetes. Diabetes Res. Clin. Pract. 133, 1–9 (2017)

CAS  PubMed  Article  Google Scholar 

J.E. Gerich, C. Meyer, H.J. Woerle, M. Stumvoll, Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care 24(2), 382–391 (2001)

CAS  PubMed  Article  Google Scholar 

R.A. DeFronzo, D. Tripathy, Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32(Suppl 2), S157–163 (2009)

CAS  PubMed  PubMed Central  Article  Google Scholar 

K.E. Merz, D.C. Thurmond, Role of Skeletal Muscle in Insulin Resistance and Glucose Uptake. Compr. Physiol. 10(3), 785–809 (2020)

PubMed  PubMed Central  Article  Google Scholar 

A.D. Attie, P.E. Scherer, Adipocyte metabolism and obesity. J. Lipid Res. 50(Suppl), S395–399 (2009)

PubMed  PubMed Central  Article  Google Scholar 

H. Ruan, H.F. Lodish, Regulation of insulin sensitivity by adipose tissue-derived hormones and inflammatory cytokines. Curr. Opin. Lipidol. 15(3), 297–302 (2004)

CAS  PubMed  Article  Google Scholar 

M.M. Adeva-Andany, N. Pérez-Felpete, C. Fernández-Fernández, C. Donapetry-García, C. Pazos-García, Liver glucose metabolism in humans. Biosci. Rep. 36(6), e00416 (2016).

P.M. Titchenell, M.A. Lazar, M.J. Birnbaum, Unraveling the Regulation of Hepatic Metabolism by Insulin. Trends Endocrinol. Metab. 28(7), 497–505 (2017)

CAS  PubMed  PubMed Central  Article  Google Scholar 

L. Rui, Energy metabolism in the liver. Compr. Physiol. 4(1), 177–197 (2014)

PubMed  PubMed Central  Article  Google Scholar 

S.H. Koo, L. Flechner, L. Qi, X. Zhang, R.A. Screaton, S. Jeffries et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437(7062), 1109–1111 (2005)

CAS  PubMed  Article  Google Scholar 

P. Puigserver, J. Rhee, J. Donovan, C.J. Walkey, J.C. Yoon, F. Oriente et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 423(6939), 550–555 (2003)

CAS  PubMed  Article  Google Scholar 

P. Workman, V.G. Brunton, D.J. Robins, Tyrosine kinase inhibitors. Semin. Cancer Biol. 3(6), 369–381 (1992)

CAS  PubMed  Google Scholar 

Y. Wu, L. Shi, Y. Zhao, P. Chen, R. Cui, M. Ji et al. Synergistic activation of mutant TERT promoter by Sp1 and GABPA in BRAF(V600E)-driven human cancers. NPJ Precis. Oncol. 5(1), 3 (2021)

CAS  PubMed  PubMed Central  Article  Google Scholar 

I. Magnusson, D.L. Rothman, L.D. Katz, R.G. Shulman, G.I. Shulman, Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. J. Clin. Investig. 90(4), 1323–1327 (1992)

CAS  PubMed  PubMed Central  Article  Google Scholar 

M.C. Petersen, D.F. Vatner, G.I. Shulman, Regulation of hepatic glucose metabolism in health and disease. Nat. Rev. Endocrinol. 13(10), 572–587 (2017)

CAS  PubMed  PubMed Central  Article  Google Scholar 

R.C. Sears, The life cycle of C-myc: from synthesis to degradation. Cell cycle (Georgetown. Tex.) 3(9), 1133–1137 (2004).

留言 (0)

沒有登入
gif