Protective effect of N-acetyl cysteine on the mitochondrial dynamic imbalance in temporal lobe epilepsy: Possible role of mTOR

Understanding the underlying molecular mechanisms involved in epilepsy is critical for the development of more effective therapies. It is believed that mTOR (Mechanistic Target of Rapamycin kinases) activity and the mitochondrial dynamic balance change during epilepsy. mTOR affects mitochondrial fission by stimulating the translation of mitochondrial fission process 1 (MTFP1). In This study, the protective role of N-acetylcysteine was studied in temporal lobe epilepsy (TLE) through the regulation of mTOR and mitochondrial dynamic proteins. Rats received N-acetylcysteine (oral administration) seven days before induction of epilepsy, followed by one day after epilepsy. TLE was induced by microinjection of kainite into the left lateral ventricle. The total mTOR and Drp1 levels in the hippocampus were evaluated by western blotting. MFN1 was assessed using immunohistochemistry, and the expression of Fis.1 and MTFP1 (fission-related proteins) and OPA (fusion-related protein) were detected by real-time PCR. The mitochondrial membrane potential was measured by Rhodamin 123. The results showed that 72 h after induction of epilepsy, the mTOR protein level increased, and the balance of the mitochondrial dynamic was disturbed; however, oral administration of NAC decreased the mTOR protein level and improved the mitochondrial dynamic. These findings indicate that NAC plays a neuroprotective role in temporal lobe epilepsy, probably through decreasing the mTOR protein level, which can improve the imbalance in the mitochondrial dynamic.

留言 (0)

沒有登入
gif