Glucose-Lowering and Metabolic Effects of SGLT2 Inhibitors

Anker S.D. Butler J. Filippatos G. et al.

Empagliflozin in heart failure with a preserved ejection fraction.

N Engl J Med. 385: 1451-1461Packer M. Anker S.D. Butler J. et al.

Cardiovascular and renal outcomes with empagliflozin in heart failure.

N Engl J Med. 383: 1413-1424McMurray J.J.V. Docherty K.F. Jhund P.S.

Dapagliflozin in patients with heart failure and reduced ejection fraction.

N Engl J Med. 382: 973Coleman R.L. Gray A.M. Broedl Md UC. et al.

Can the cardiovascular risk reductions observed with empagliflozin in the EMPA-REG OUTCOME trial be explained by concomitant changes seen in conventional cardiovascular risk factor levels?.

Diabetes Obes Metab. 22: 1151-1156Lee M.M.Y. McMurray J.J.V. Lorenzo-Almoros A. et al.

Diabetic cardiomyopathy.

Heart. 105: 337-345Tan Y. Zhang Z. Zheng C. et al.

Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence.

Nat Rev Cardiol. 17: 585-607

Cardiovascular protection by sodium glucose cotransporter 2 inhibitors: potential mechanisms.

Am J Med. 130: S30-S39Tsapas A. Avgerinos I. Karagiannis T. et al.

Comparative effectiveness of glucose-lowering drugs for type 2 diabetes: a systematic review and network meta-analysis.

Ann Intern Med. 173: 278-286Mordi I.R. Tee A. Palmer C.N. et al.

Microvascular disease and heart failure with reduced and preserved ejection fraction in type 2 diabetes.

ESC Heart Fail. 7: 1168-1177MacDonald M.R. Petrie M.C. Varyani F. et al.

Impact of diabetes on outcomes in patients with low and preserved ejection fraction heart failure: an analysis of the candesartan in heart failure: assessment of reduction in mortality and morbidity (CHARM) programme.

Eur Heart J. 29: 1377-1385Inzucchi S.E. Docherty K.F. Kober L. et al.

Dapagliflozin and the incidence of type 2 diabetes in patients with heart failure and reduced ejection fraction: an exploratory analysis From DAPA-HF.

Diabetes Care. 44: 586-594

Metabolic effects of SGLT-2 inhibitors beyond increased glucosuria: a review of the clinical evidence.

Diabetes Metab. 40: S4-S11Al Jobori H. Daniele G. Adams J. et al.

Empagliflozin treatment is associated with improved beta-cell function in type 2 diabetes mellitus.

J Clin Endocrinol Metab. 103: 1402-1407Lundkvist P. Pereira M.J. Kamble P.G. et al.

Glucagon levels during short-term SGLT2 inhibition are largely regulated by glucose changes in patients with type 2 diabetes.

J Clin Endocrinol Metab. 104: 193-201Op den Kamp Y.J.M. de Ligt M. Dautzenberg B. et al.

Effects of the SGLT2 inhibitor dapagliflozin on energy metabolism in patients with type 2 diabetes: a randomized, double-blind crossover trial.

Diabetes Care. 44: 1334-1343Merovci A. Solis-Herrera C. Daniele G. et al.

Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production.

J Clin Invest. 124: 509-514Daniele G. Xiong J. Solis-Herrera C. et al.

Dapagliflozin enhances fat oxidation and ketone production in patients with type 2 diabetes.

Diabetes Care. 39: 2036-2041Stanley W.C. Recchia F.A. Lopaschuk G.D.

Myocardial substrate metabolism in the normal and failing heart.

Physiol Rev. 85: 1093-1129Ferrannini E. Baldi S. Frascerra S. et al.

Shift to fatty substrate utilization in response to sodium-glucose Cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes.

Diabetes. 65: 1190-1195Ferrannini E. Mark M. Mayoux E.

CV protection in the EMPA-REG OUTCOME trial: a "Thrifty Substrate" hypothesis.

Diabetes Care. 39: 1108-1114Singh J.S.S. Mordi I.R. Vickneson K. et al.

Dapagliflozin versus placebo on left ventricular remodeling in patients with diabetes and heart failure: the REFORM trial.

Diabetes Care. 43: 1356-1359Pietschner R. Kolwelter J. Bosch A. et al.

Effect of empagliflozin on ketone bodies in patients with stable chronic heart failure.

Cardiovasc Diabetol. 20: 219Thirunavukarasu S. Jex N. Chowdhary A. et al.

Empagliflozin treatment is associated with improvements in cardiac energetics and function and reductions in myocardial cellular volume in patients with type 2 diabetes.

Diabetes. 70: 2810-2822Hundertmark M.J. Agbaje O.F. Coleman R. et al.

Design and rationale of the EMPA-VISION trial: investigating the metabolic effects of empagliflozin in patients with heart failure.

ESC Heart Fail. 8: 2580-2590Maack C. Lehrke M. Backs J. et al.

Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the Translational Research Committee of the Heart Failure Association-European Society of Cardiology.

Eur Heart J. 39: 4243-4254Murphy S.P. Kakkar R. McCarthy C.P. et al.

Inflammation in heart failure: JACC state-of-the-art review.

J Am Coll Cardiol. 75: 1324-1340Curran F.M. Bhalraam U. Mohan M. et al.

Neutrophil-to-lymphocyte ratio and outcomes in patients with new-onset or worsening heart failure with reduced and preserved ejection fraction.

ESC Heart Fail. 8: 3168-3179Aimo A. Castiglione V. Borrelli C. et al.

Oxidative stress and inflammation in the evolution of heart failure: From pathophysiology to therapeutic strategies.

Eur J Prev Cardiol. 27: 494-510Heusch G. Libby P. Gersh B. et al.

Cardiovascular remodelling in coronary artery disease and heart failure.

Lancet. 383: 1933-1943Kolijn D. Pabel S. Tian Y. et al.

Empagliflozin improves endothelial and cardiomyocyte function in human heart failure with preserved ejection fraction via reduced pro-inflammatory-oxidative pathways and protein kinase Galpha oxidation.

Cardiovasc Res. 117: 495-507

Anti-inflammatory effects of empagliflozin in patients with type 2 diabetes and insulin resistance.

Diabetol Metab Syndr. 10: 93Brown A.J.M. Gandy S. McCrimmon R. et al.

A randomized controlled trial of dapagliflozin on left ventricular hypertrophy in people with type two diabetes: the DAPA-LVH trial.

Eur Heart J. 41: 3421-3432Requena-Ibanez J.A. Santos-Gallego C.G. Rodriguez-Cordero A. et al.

Mechanistic Insights of Empagliflozin in Nondiabetic Patients With HFrEF: From the EMPA-TROPISM Study.

JACC Heart Fail. 9: 578-589Correale M. Mazzeo P. Mallardi A. et al.

Switch to SGLT2 inhibitors and improved endothelial function in diabetic patients with chronic heart failure.

Cardiovasc Drugs Ther. ()https://doi.org/10.1007/s10557-021-07254-3Zainordin N.A. Hatta S. Mohamed Shah F.Z. et al.

Effects of dapagliflozin on endothelial dysfunction in type 2 diabetes with established ischemic heart disease (EDIFIED).

J Endocr Soc. 4: bvz017Tanaka A. Shimabukuro M. Machii N. et al.

Effect of empagliflozin on endothelial function in patients with type 2 diabetes and cardiovascular disease: results from the multicenter, randomized, placebo-controlled, double-blind EMBLEM trial.

Diabetes Care. 42: e159-e161Hess D.A. Terenzi D.C. Trac J.Z. et al.

SGLT2 Inhibition with empagliflozin increases circulating provascular progenitor cells in people with type 2 diabetes mellitus.

Cell Metab. 30: 609-613Lavie C.J. Alpert M.A. Arena R. et al.

Impact of obesity and the obesity paradox on prevalence and prognosis in heart failure.

JACC Heart Fail. 1: 93-102Aune D. Sen A. Norat T. et al.

Body mass index, abdominal fatness, and heart failure incidence and mortality: a systematic review and dose-response meta-analysis of prospective studies.

Circulation. 133: 639-649Sharma A. Lavie C.J. Borer J.S. et al.

Meta-analysis of the relation of body mass index to all-cause and cardiovascular mortality and hospitalization in patients with chronic heart failure.

Am J Cardiol. 115: 1428-1434Powell-Wiley T.M. Poirier P. Burke L.E. et al.

American Heart Association Council on L, Cardiometabolic H, Council on C, Stroke N, Council on Clinical C, Council on E, Prevention and Stroke C. Obesity and Cardiovascular Disease: A Scientific Statement From the American Heart Association.

Circulation. 143: e984-e1010van Woerden G. van Veldhuisen D.J. Manintveld O.C. et al.

Epicardial adipose tissue and outcome in heart failure with mid-range and preserved ejection fraction.

Circ Heart Fail. 15 (): e009238Al-Talabany S. Mordi I. Graeme Houston J. et al.

Epicardial adipose tissue is related to arterial stiffness and inflammation in patients with cardiovascular disease and type 2 diabetes.

BMC Cardiovasc Disord. 18: 31Rao V.N. Bush C.G. Mongraw-Chaffin M. et al.

Regional adiposity and risk of heart failure and mortality: the jackson heart study.

J Am Heart Assoc. 10: e020920Rao V.N. Zhao D. Allison M.A. et al.

Adiposity and incident heart failure and its subtypes: MESA (Multi-Ethnic Study of Atherosclerosis).

JACC Heart Fail. 6: 999-1007Pereira M.J. Eriksson J.W.

Emerging role of SGLT-2 inhibitors for the treatment of obesity.

Drugs. 79: 219-230Zaccardi F. Webb D.R. Htike Z.Z. et al.

Efficacy and safety of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes mellitus: systematic review and network meta-analysis.

Diabetes Obes Metab. 18: 783-794Del Prato S. Nauck M. Duran-Garcia S. et al.

Long-term glycaemic response and tolerability of dapagliflozin versus a sulphonylurea as add-on therapy to metformin in patients with type 2 diabetes: 4-year data.

Diabetes Obes Metab. 17: 581-590Bolinder J. Ljunggren O. Kullberg J. et al.

Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin.

J Clin Endocrinol Metab. 97: 1020-1031Diaz-Rodriguez E. Agra R.M. Fernandez A.L. et al.

Effects of dapagliflozin on human epicardial adipose tissue: modulation of insulin resistance, inflammatory chemokine production, and differentiation ability.

Cardiovasc Res. 114: 336-346De Stefano A. Tesauro M. Di Daniele N. et al.

Mechanisms of SGLT2 (Sodium-Glucose Transporter Type 2) inhibition-induced relaxation in arteries from human visceral adipose tissue.

Hypertension. 77: 729-738Adamson C. Jhund P.S. Docherty K.F. et al.

Efficacy of dapagliflozin in heart failure with reduced ejection fraction according to body mass index.

Eur J Heart Fail. 23: 1662-1672Perrone-Filardi P. Paolillo S. Costanzo P. et al.

The role of metabolic syndrome in heart failure.

Eur Heart J. 36: 2630-2634Mordi I.R. Lumbers R.T. Palmer C.N.A. et al.

Type 2 diabetes, metabolic traits, and risk of heart failure: a mendelian randomization study.

Diabetes Care. 44: 1699-1705Voulgari C. Tentolouris N. Dilaveris P. et al.

Increased heart failure risk in normal-weight people with metabolic syndrome compared with metabolically healthy obese individuals.

J Am Coll Cardiol. 58: 1343-1350Kaneto H. Obata A. Kimura T. et al.

Beneficial effects of sodium-glucose cotransporter 2 inhibitors for preservation of pancreatic beta-cell function and reduction of insulin resistance.

J Diabetes. 9: 219-225Ferreira J.P. Verma S. Fitchett D. et al.

Metabolic syndrome in patients with type 2 diabetes and atherosclerotic cardiovascular disease: a post hoc analyses of the EMPA-REG OUTCOME trial.

Cardiovasc Diabetol. 19: 200Wang X. Ni J. Guo R. et al.

SGLT2 inhibitors break the vicious circle between heart failure and insulin resistance: targeting energy metabolism.

Heart Fail Rev. 27: 961-980Kuchay M.S. Krishan S. Mishra S.K. et al.

Effect of empagliflozin on liver fat in patients with type 2 diabetes and nonalcoholic fatty liver disease: a randomized controlled trial (E-LIFT Trial).

Diabetes Care. 41: 1801-1808Latva-Rasku A. Honka M.J. Kullberg J. et al.

The SGLT2 inhibitor dapagliflozin reduces liver fat but does not affect tissue insulin sensitivity: a randomized, double-blind, placebo-controlled study with 8-week treatment in type 2 diabetes patients.

Diabetes Care. 42: 931-937Xing B. Zhao Y. Dong B. et al.

Effects of sodium-glucose cotransporter 2 inhibitors on non-alcoholic fatty liver disease in patients with type 2 diabetes: A meta-analysis of randomized controlled trials.

J Diabetes Investig. 11: 1238-1247Salah H.M. Pandey A. Soloveva A. et al.

Relationship of nonalcoholic fatty liver disease and heart failure with preserved ejection fraction.

JACC Basic Transl Sci. 6: 918-932

SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review.

Diabetologia. 61: 2108-2117Mordi N.A. Mordi I.R. Singh J.S. et al.

Renal and cardiovascular effects of SGLT2 inhibition in combination with loop diuretics in patients with type 2 diabetes and chronic heart failure: The RECEDE-CHF trial.

Circulation. 142: 1713-1724Scholtes R.A. Muskiet M.H.A. van Baar M.J.B. et al.

Natriuretic effect of two weeks of dapagliflozin treatment in patients with type 2 diabetes and preserved kidney function during standardized sodium intake: results of the DAPASALT trial.

Diabetes Care. 44: 440-447Boorsma E.M. Beusekamp J.C. Ter Maaten J.M. et al.

Effects of empagliflozin on renal sodium and glucose handling in patients with acute heart failure.

Eur J Heart Fail. 23: 68-78Hallow K.M. Helmlinger G. Greasley P.J. et al.

Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis.

Diabetes Obes Metab. 20: 479-487Jensen J. Omar M. Kistorp C. et al.

Effects of empagliflozin on estimated extracellular volume, estimated plasma volume, and measured glomerular filtration rate in patients with heart failure (Empire HF Renal): a prespecified substudy of a double-blind, randomised, placebo-controlled trial.

Lancet Diabetes Endocrinol. 9: 106-116Brown A. Gandy S. Mordi I.R. et al.

Dapagliflozin improves left ventricular myocardial longitudinal function in patients with type 2 diabetes.

JACC Cardiovasc Imaging. 14: 503-504Ferreira J.P. Anker S.D. Butler J. et al.

Impact of anaemia and the effect of empagliflozin in heart failure with reduced ejection fraction: findings from EMPEROR-Reduced.

Eur J Heart Fail. 24: 708-715Sano M. Takei M. Shiraishi Y. et al.

Increased hematocrit during sodium-glucose cotransporter 2 inhibitor therapy indicates recovery of tubulointerstitial function in diabetic kidneys.

J Clin Med Res. 8: 844-847

High blood pressure and cardiovascular disease.

Hypertension. 75: 285-292Pinho-Gomes A.C. Rahimi K.

Management of blood pressure in heart failure.

Heart. 105: 589-595Bohm M. Anker S.D. Butler J. et al.

Empagliflozin improves cardiovascular and renal outcomes in heart failure irrespective of systolic blood pressure.

J Am Coll Cardiol. 78: 1337-1348Serenelli M. Bohm M. Inzucchi S.E. et al.

Effect of dapagliflozin according to baseline systolic blood pressure in the Dapagliflozin and Prevention of Adverse Outcomes in Heart Failure trial (DAPA-HF).

Eur Heart J. 41: 3402-3418Verma S. Mazer C.D. Yan A.T. et al.

Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease: the EMPA-HEART CardioLink-6 randomized clinical trial.

Circulation. 140: 1693-1702Inzucchi S.E. Zinman B. Fitchett D. et al.

How does empagliflozin reduce cardiovascular mortality? insights from a mediation analysis of the EMPA-REG OUTCOME trial.

Diabetes Care. 41: 356-363

留言 (0)

沒有登入
gif