Renoprotective Effects of SGLT2 Inhibitors

US Food and Drug Administration. Guidance for industry: diabetes mellitus — evaluating cardiovascular risk in new antidiabetic therapies to treat type 2 diabetes.

() ()Wiviott S.D. Raz I. Bonaca M.P. et al.

Dapagliflozin and cardiovascular outcomes in type 2 diabetes.

N Engl J Med. 380: 347-357Zinman B. Wanner C. Lachin J.M. et al.

Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes.

N Engl J Med. 373: 2117-2128Wanner C. Inzucchi S.E. Lachin J.M. et al.

Empagliflozin and progression of kidney disease in type 2 diabetes.

N Engl J Med. 375: 323-334Neal B. Perkovic V. Mahaffey K.W. et al.

Canagliflozin and cardiovascular and renal events in type 2 diabetes.

N Engl J Med. 377: 644-657Mosenzon O. Wiviott S.D. Cahn A. et al.

Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE-TIMI 58 randomised trial.

Lancet Diabetes Endocrinol. 7: 606-617Toyama T. Neuen B.L. Jun M. et al.

Effect of SGLT2 inhibitors on cardiovascular, renal and safety outcomes in patients with type 2 diabetes mellitus and chronic kidney disease: A systematic review and meta-analysis.

Diabetes Obes Metab. 21: 1237-1250Perkovic V. Jardine M.J. Neal B. et al.

Canagliflozin and renal outcomes in type 2 diabetes and nephropathy.

N Engl J Med. 380: 2295-2306Heerspink H.J.L. Stefansson B.V. Correa-Rotter R. et al.

Dapagliflozin in patients with chronic kidney disease.

N Engl J Med. 383: 1436-1446Heerspink H.J.L. Jongs N. Chertow G.M. et al.

Effect of dapagliflozin on the rate of decline in kidney function in patients with chronic kidney disease with and without type 2 diabetes: a prespecified analysis from the DAPA-CKD trial.

Lancet Diabetes Endocrinol. 9: 743-754Vallon V. Platt K.A. Cunard R. et al.

SGLT2 mediates glucose reabsorption in the early proximal tubule.

J Am Soc Nephrol. 22: 104-112Rieg T. Masuda T. Gerasimova M. et al.

Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia.

Am J Physiol Renal Physiol. 306: F188-F193Gorboulev V. Schurmann A. Vallon V. et al.

Na(+)-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion.

Diabetes. 61: 187-196

Glucose transporters in the kidney in health and disease.

Pflugers Arch. 472: 1345-1370Wright E.M. Loo D.D. Hirayama B.A.

Biology of human sodium glucose transporters.

Physiol Rev. 91: 733-794Umino H. Hasegawa K. Minakuchi H. et al.

High basolateral glucose increases sodium-glucose cotransporter 2 and reduces sirtuin-1 in renal tubules through glucose transporter-2 detection.

Sci Rep. 8: 6791Rahmoune H. Thompson P.W. Ward J.M. et al.

Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes.

Diabetes. 54: 3427-3434Wang X.X. Levi J. Luo Y. et al.

SGLT2 expression is increased in human diabetic nephropathy: SGLT2 inhibition decreases renal lipid accumulation, inflammation and the development of nephropathy in diabetic mice.

J Biol Chem. 292: 5335-5348Vallon V. Gerasimova M. Rose M.A. et al.

SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice.

Am J Physiol Renal Physiol. 306: F194-F204Vallon V. Rose M. Gerasimova M. et al.

Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus.

Am J Physiol Ren Physiol. 304: F156-F167Wen L. Zhang Z. Peng R. et al.

Whole transcriptome analysis of diabetic nephropathy in the db/db mouse model of type 2 diabetes.

J Cell Biochem. 120: 17520-17533

The tubular hypothesis of nephron filtration and diabetic kidney disease.

Nat Rev Nephrol. 16: 317-336Katsurada K. Nandi S.S. Sharma N.M. et al.

Enhanced expression and function of renal SGLT2 (Sodium-Glucose Cotransporter 2) in heart failure: role of renal nerves.

Circ Heart Fail. 14: e008365de Oliveira T.L. Lincevicius G.S. Shimoura C.G. et al.

Effects of renal denervation on cardiovascular, metabolic and renal functions in streptozotocin-induced diabetic rats.

Life Sci. 278: 119534Osorio H. Bautista R. Rios A. et al.

Effect of treatment with losartan on salt sensitivity and SGLT2 expression in hypertensive diabetic rats.

Diabetes Res Clin Pract. 86: e46-e49Freitas H.S. Anhe G.F. Melo K.F. et al.

Na(+) -glucose transporter-2 messenger ribonucleic acid expression in kidney of diabetic rats correlates with glycemic levels: involvement of hepatocyte nuclear factor-1alpha expression and activity.

Endocrinology. 149: 717-724Freitas H.S. Schaan B.D. David-Silva A. et al.

SLC2A2 gene expression in kidney of diabetic rats is regulated by HNF-1alpha and HNF-3beta.

Mol Cell Endocrinol. 305: 63-70Chhabra K.H. Morgan D.A. Tooke B.P. et al.

Reduced renal sympathetic nerve activity contributes to elevated glycosuria and improved glucose tolerance in hypothalamus-specific Pomc knockout mice.

Mol Metab. 6: 1274-1285

Regulation of the human Na+ dependent glucose cotransporter hSGLT2.

Am J Physiol Cell Physiol. 303: C348-C354Onishi A. Fu Y. Darshi M. et al.

Effect of renal tubule-specific knockdown of the Na(+)/H(+) exchanger NHE3 in Akita diabetic mice.

Am J Physiol Ren Physiol. 317: F419-F434Khunti K. Davies M. Majeed A. et al.

Hypoglycemia and risk of cardiovascular disease and all-cause mortality in insulin-treated people with type 1 and type 2 diabetes: a cohort study.

Diabetes Care. 38: 316-322

Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition.

Diabetologia. 60: 215-225Onishi A. Fu Y. Patel R. et al.

A role for tubular Na(+)/H(+) exchanger NHE3 in the natriuretic effect of the SGLT2 inhibitor empagliflozin.

Am J Physiol Ren Physiol. 319: F712-F728Qiu H. Novikov A. Vallon V.

Ketosis and diabetic ketoacidosis in response to SGLT2 inhibitors: Basic mechanisms and therapeutic perspectives.

Diabetes Metab Res Rev. 33: 5Tomita I. Kume S. Sugahara S. et al.

SGLT2 inhibition mediates protection from diabetic kidney disease by promoting ketone body-induced mTORC1 Inhibition.

Cell Metab. 32: 404-419Ferrannini E. Mark M. Mayoux E.

CV Protection in the EMPA-REG OUTCOME trial: a "Thrifty Substrate" Hypothesis.

Diabetes Care. 39: 1108-1114Vallon V. Richter K. Blantz R.C. et al.

Glomerular hyperfiltration in experimental diabetes mellitus: potential role of tubular reabsorption.

J Am Soc Nephrol. 10: 2569-2576

Effects of SGLT2 inhibitor and dietary NaCl on glomerular hemodynamics assessed by micropuncture in diabetic rats.

Am J Physiol Ren Physiol. 320: F761-F777Thomson S.C. Rieg T. Miracle C. et al.

Acute and chronic effects of SGLT2 blockade on glomerular and tubular function in the early diabetic rat.

Am J Physiol Regul Integr Comp Physiol. 302: R75-R83Song P. Huang W. Onishi A. et al.

Knockout of Na-glucose-cotransporter SGLT1 mitigates diabetes-induced upregulation of nitric oxide synthase-1 in macula densa and glomerular hyperfiltration.

Am J Physiol Ren Physiol. 317: F207-F217

Effects of SGLT2 inhibitors on kidney and cardiovascular function.

Annu Rev Physiol. 83: 503-528Perkovic V. Jardine M. Vijapurkar U. et al.

Renal effects of canagliflozin in type 2 diabetes mellitus.

Curr Med Res Opin. 31: 2219-2231Heerspink H.J. Desai M. Jardine M. et al.

Canagliflozin slows progression of renal function decline independently of glycemic effects.

J Am Soc Nephrol. 28: 368-375Kohan D.E. Fioretto P. Johnsson K. et al.

The effect of dapagliflozin on renal function in patients with type 2 diabetes.

J Nephrol. 29: 391-400Yale J.F. Bakris G. Cariou B. et al.

Efficacy and safety of canagliflozin in subjects with type 2 diabetes and chronic kidney disease.

Diabetes Obes Metab. 15: 463-473Barnett A.H. Mithal A. Manassie J. et al.

Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: a randomised, double-blind, placebo-controlled trial.

Lancet Diabetes Endocrinol. 2: 369-384Dekkers C.C.J. Petrykiv S. Laverman G.D. et al.

Effects of the SGLT-2 inhibitor dapagliflozin on glomerular and tubular injury markers.

Diabetes Obes Metab. 20: 1988-1993Satirapoj B. Korkiatpitak P. Supasyndh O.

Effect of sodium-glucose cotransporter 2 inhibitor on proximal tubular function and injury in patients with type 2 diabetes: a randomized controlled trial.

Clin Kidney J. 12: 326-332

Acute kidney injury with sodium-glucose co-transporter-2 inhibitors: a meta-analysis of cardiovascular outcome trials.

Diabetes Obes Metab. 21: 1996-2000Neuen B.L. Young T. Heerspink H.J.L. et al.

SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis.

Lancet Diabetes Endocrinol. 7: 845-854Vallon V. Unwin R. Inscho E.W. et al.

Extracellular nucleotides and P2 receptors in renal function.

Physiol Rev. 100: 211-269Ren Y. Garvin J.L. Carretero O.A.

Efferent arteriole tubuloglomerular feedback in the renal nephron.

Kidney Int. 59: 222-229Vallon V. Muhlbauer B. Osswald H.

Adenosine and kidney function.

Physiol Rev. 86: 901-940Ren Y. Garvin J.L. Liu R. et al.

Possible mechanism of efferent arteriole (Ef-Art) tubuloglomerular feedback.

Kidney Int. 71: 861-866Kidokoro K. Cherney D.Z.I. Bozovic A. et al.

Evaluation of glomerular hemodynamic function by empagliflozin in diabetic mice using in vivo imaging.

Circulation. 140: 303-315Thomson S. Vallon V. Blantz R.C.

Asymmetry of tubuloglomerular feedback effector mechanism with respect to ambient tubular flow.

Am J Physiol. 271: F1123-F1130

Tubuloglomerular feedback responses of the downstream efferent resistance: unmasking a role for adenosine?.

Kidney Int. 71: 837-839Schnermann J. Briggs J.P.

Single nephron comparison of the effect of loop of Henle flow on filtration rate and pressure in control and angiotensin II-infused rats.

Miner Electrolyte Metab. 15: 103-107Bakris G. Oshima M. Mahaffey K.W. et al.

Effects of Canagliflozin in patients with Baseline eGFR <30 ml/min per 1.73 m(2): subgroup analysis of the randomized CREDENCE Trial.

Clin J Am Soc Nephrol. 15: 1705-1714Zhang J. Wei J. Jiang S. et al.

Macula densa SGLT1-NOS1-TGF pathway -- a new mechanism for glomerular hyperfiltration during hyperglycemia.

J Am Soc Nephrol. 30: 578-593

Pathophysiology of the diabetic kidney.

Compr Physiol. 1: 1175-1232Pruijm M. Milani B. Pivin E. et al.

Reduced cortical oxygenation predicts a progressive decline of renal function in patients with chronic kidney disease.

Kidney Int. 93: 932-940Layton A.T. Vallon V. Edwards A.

Modeling oxygen consumption in the proximal tubule: effects of NHE and SGLT2 inhibition.

Am J Physiol Ren Physiol. 308: F1343-F1357Layton A.T. Vallon V. Edwards A.

Predicted consequences of diabetes and SGLT inhibition on transport and oxygen consumption along a rat nephron.

Am J Physiol Ren Physiol. 310: F1269-F1283Bessho R. Takiyama Y. Takiyama T. et al.

Hypoxia-inducible factor-1alpha is the therapeutic target of the SGLT2 inhibitor for diabetic nephropathy.

Sci Rep. 9: 14754Neill O. Fasching A. Pihl L. et al.

Acute SGLT inhibition normalizes oxygen tension in the renal cortex but causes hypoxia in the renal medulla in anaesthetized control and diabetic rats.

Am J Physiol Ren Physiol. 309: F227-F234Laursen J.C. Sondergaard-Heinrich N. de Melo J.M.L. et al.

Acute effects of dapagliflozin on renal oxygenation and perfusion in type 1 diabetes with albuminuria: A randomised, double-blind, placebo-controlled crossover trial.

EClinicalMedicine. 37: 100895

SGLT2 inhibition in a kidney with reduced nephron number: modeling and analysis of solute transport and metabolism.

Am J Physiol Ren Physiol. 314: F969-F984Pessoa T.D. Campos L.C. Carraro-Lacroix L. et al.

Functional role of glucose metabolism, osmotic stress, and sodium-glucose cotransporter isoform-mediated transport on Na+/H+ exchanger isoform 3 activity in the renal proximal tubule.

J Am Soc Nephrol. 25: 2028-2039Borges-Junior F.A. Silva Dos Santos D. Benetti A. et al.

Empagliflozin inhibits proximal tubule NHE3 activity, preserves GFR, and restores euvolemia in nondiabetic rats with induced heart failure.

J Am Soc Nephrol. 32: 1616-1629Huang W. Patel R. Onishi A. et al.

Tubular NHE3 is a determinant of the acute natriuretic and chronic blood pressure lowering effect of the SGLT2 inhibitor empagliflozin.

FASEB J. 32: 620-617Fu Y. Gerasimova M. Mayoux E. et al.

SGLT2 inhibitor empagliflozin increases renal NHE3 phosphorylation in diabetic Akita mice: possible implications for the prevention of glomerular hyperfiltration.

Diabetes. 63: A132Coady M.J. El T.A. Santer R. et al.

MAP17 is a necessary activator of renal Na+/Glucose cotransporter SGLT2.

J Am Soc Nephrol. 28: 85-93Masuda T. Watanabe Y. Fukuda K. et al.

Unmasking a sustained negative effect of SGLT2 inhibition on body fluid volume in the rat.

Am J Physiol Ren Physiol. 315: F653-F664Layton A.T. Laghmani K. Vallon V. et al.

Solute transport and oxygen consumption along the nephrons: effects of Na+ transport inhibitors.

Am J Physiol Ren Physiol. 311: F1217-F1229Fukushima K. Kitamura S. Tsuji K. et al.

Sodium-glucose cotransporter 2 inhibitors work as a "Regulator" of autophagic activity in overnutrition diseases.

Front Pharmacol. 12: 761842Fukushima K. Kitamura S. Tsuji K. et al.

Sodium glucose co-transporter 2 inhibitor ameliorates autophagic flux impairment on renal proximal tubular cells in obesity mice.

Int J Mol Sci. 21: 4054

SGLT2 inhibitors produce cardiorenal benefits by promoting adaptive cellular reprogramming to induce a state of fasting mimicry: a paradigm shift in understanding their mechanism of action.

Diabetes Care. 43: 508-511Lee Y.H. Kim S.H. Kang J.M. et al.

Empagliflozin attenuates diabetic tubulopathy by improving mitochondrial fragmentation and autophagy.

Am J Physiol Ren Physiol. 317: F767-F780

The proximal tubule in the pathophysiology of the diabetic kidney.

Am J Physiol Regul Integr Comp Physiol. 300: R1009-R1022Darshi M. Onishi A. Kim J.J. et al.

Metabolic reprogramming in diabetic kidney disease can be restored via SGLT2 inhibition.

J Am Soc Nephrol. 439 : 439Mulder S. Heerspink H.J.L. Darshi M. et al.

Effects of dapagliflozin on urinary metabolites in people with type 2 diabetes.

Diabetes Obes Metab. 21: 2422-2428Wu J. Sun Z. Yang S. et al.

Profiling of kidney transcriptome at the single-cell level reveals a distinct response of proximal tubular cells to SGLT2 inhibitor and angiotensin receptor blocker treatment in diabetic mice.

Mol Ther. ()https://doi.org/10.1016/j.ymthe.2021.10.013Takagi S. Li J. Takagaki Y. et al.

Ipragliflozin improves mitochondrial abnormalities in renal tubules induced by a high-fat diet.

J Diabetes Investig. 9: 1025-1032Lytvyn Y. Skrtic M. Yang G.K. et al.

Glycosuria-mediated urinary uric acid excretion in patients with uncomplicated type 1 diabetes mellitus.

Am J Physiol Ren Physiol. 308: F77-F83Novikov A. Fu Y. Huang W. et al.

SGLT2 inhibition and renal urate excretion: role of luminal glucose, GLUT9, and URAT1.

Am J Physiol Ren Physiol. 316: F173-F185Chino Y. Samukawa Y. Sakai S. et al.

SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria.

Biopharm Drug Dispos. 35: 391-404Toyoki D. Shibata S. Kuribayashi-Okuma E. et al.

Insulin stimulates uric acid reabsorption via regulating urate transporter 1 and ATP-binding cassette subfamily G member 2.

Am J Physiol Ren Physiol. 313: F826-F834Rajasekeran H. Lytvyn Y. Bozovic A. et al.

Urinary adenosine excretion in type 1 diabetes.

Am J Physiol Ren Physiol. 313: F184-F191van Bommel E.J.M. Muskiet M.H.A. van Baar M.J.B. et al.

The renal hemodynamic effects of the SGLT2 inhibitor dapagliflozin are caused by post-glomerular vasodilatation rather than pre-glomerular vasoconstriction in metformin-treated patients with type 2 diabetes in the randomized, double-blind RED trial.

Kidney Int. 97: 202-212Chen R. Dioum E.M. Hogg R.T. et al.

Hypoxia increases sirtuin 1 expression in a hypoxia-inducible factor-dependent manner.

J Biol Chem. 286: 13869-13878Mazer C.D. Hare G.M.T. Connelly P.W. et al.

Effect of empagliflozin on erythropoietin levels, iron stores and red blood cell morphology in patients with type 2 diabetes and coronary artery disease.

Circulation. 141: 704-707Ghanim H. Abuaysheh S. Hejna J. et al.

Dapagliflozin suppresses hepcidin and increases erythropoiesis.

J Clin Endocrinol Metab. 105: dgaa057Inzucchi S.E. Zinman B. Fitchett D. et al.

How does empagliflozin reduce cardiovascular mortality? insights from a mediation analysis of the EMPA-REG OUTCOME trial.

Diabetes Care. 41: 356-363Li J. Neal B. Perkovic V. et al.

Mediators of the effects of canagliflozin on kidney protection in patients with type 2 diabetes.

Kidney Int. 98: 769-777Li J. Woodward M. Perkovic V. et al.

Mediators of the effects of canagliflozin on heart failure in patients with type 2 diabetes.

JACC Heart Fail. 8: 57-66

Are the cardiorenal benefits of SGLT2 inhibitors due to inhibition of the sympathetic nervous system?.

JACC Basic Transl Sci. 5: 180-182Wan N. Fujisawa Y. Kobara H. et al.

Effects of an SGLT2 inhibitor on the salt sensitivity of blood pressure and sympathetic nerve activity in a nondiabetic rat model of chronic kidney disease.

Hypertens Res. 43: 492-499Matthews V.B. Elliot R.H. Rudnicka C. et al.

Role of the sympathetic nervous system in regulation of the sodium glucose cotransporter 2.

J Hypertens. 35: 2059-2068Chiba Y. Yamada T. Tsukita S. et al.

Dapagliflozin, a Sodium-Glucose Co-Transporter 2 inhibitor, acutely reduces energy expenditure in BAT via neural signals in mice.

PLoS One. 11: e0150756Herat L.Y. Magno A.L. Rudnicka C. et al.

SGLT2 inhibitor-induced sympathoinhibition: a novel mechanism for cardiorenal protection.

JACC Basic Transl Sci. 5: 169-179Jordan J. Tank J. Heusser K. et al.

The effect of empagliflozin on muscle sympathetic nerve activity in patients with type II diabetes mellitus.

J Am Soc Hypertens. 11: 604-612

留言 (0)

沒有登入
gif