Stem cell microencapsulation maintains stemness in inflammatory microenvironment

Mata, R. et al. The dynamic inflammatory tissue microenvironment: signality and disease therapy by biomaterials. Research 2021, 4189516 (2021).

PubMed  PubMed Central  Article  Google Scholar 

Eming, S. A., Wynn, T. A. & Martin, P. Inflammation and metabolism in tissue repair and regeneration. Science 356, 1026–1030 (2017).

PubMed  Article  Google Scholar 

Gonzalez-Rey, E. et al. Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut 58, 929–939 (2009).

PubMed  Article  Google Scholar 

Bartosh, T. J., Ylostalo, J. H., Bazhanov, N., Kuhlman, J. & Prockop, D. J. Dynamic compaction of human mesenchymal stem/precursor cells into spheres self-activates caspase-dependent IL1 signaling to enhance secretion of modulators of inflammation and immunity (PGE2, TSG6, and STC1). Stem Cells 31, 2443–2456 (2013).

PubMed  Article  Google Scholar 

Hyun, J. S. et al. The seed and the soil: optimizing stem cells and their environment for tissue regeneration. Ann. Plast. Surg. 70, 235–239 (2013).

PubMed  Article  Google Scholar 

Yu, J. et al. The effects of Porphyromonas gingivalis on inflammatory and immune responses and osteogenesis of mesenchymal stem cells. Stem Cells Dev. 30, 1191–1201 (2021).

PubMed  Article  Google Scholar 

Wang, Y., Andrukhov, O. & Rausch-Fan, X. Oxidative stress and antioxidant system in periodontitis. Front Physiol. 8, 910 (2017).

PubMed  PubMed Central  Article  Google Scholar 

Ford, P. J., Gamonal, J. & Seymour, G. J. Immunological differences and similarities between chronic periodontitis and aggressive periodontitis. Periodontol. 2000. 53, 111–123 (2010).

PubMed  Article  Google Scholar 

Li, Q. et al. Stem cell therapies for periodontal tissue regeneration: a network meta-analysis of preclinical studies. Stem Cell Res. Ther. 11, 427 (2020).

PubMed  PubMed Central  Article  Google Scholar 

Seo, B. M. et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364, 149–155 (2004).

PubMed  Article  Google Scholar 

Xu, X. Y. et al. Exosomes derived from P2X7 receptor gene-modified cells rescue inflammation-compromised periodontal ligament stem cells from dysfunction. Stem Cells Transl. Med. 9, 1414–1430 (2020).

PubMed  PubMed Central  Article  Google Scholar 

Yang, L. et al. Biomass microcapsules with stem cell encapsulation for bone repair. Nanomicro Lett. 14, 4 (2021).

PubMed  PubMed Central  Google Scholar 

Huebsch, N. et al. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat. Mater. 9, 518–526 (2010).

PubMed  PubMed Central  Article  Google Scholar 

Liu, T. et al. Biomedical applications of layer-by-layer self-assembly for cell encapsulation: current status and future perspectives. Adv. Health. Mater. 8, e1800939 (2019).

Article  Google Scholar 

Wang, Y. et al. Peptide programmed hydrogels as safe sanctuary microenvironments for cell transplantation. Adv. Funct. Mater. 30, 1900390 (2019).

Article  Google Scholar 

Mao, A. S. et al. Programmable microencapsulation for enhanced mesenchymal stem cell persistence and immunomodulation. Proc. Natl Acad. Sci. USA 116, 15392–15397 (2019).

PubMed  PubMed Central  Article  Google Scholar 

Zhang, Y., Shen, L., Zhong, Q. Z. & Li, J. Metal-phenolic network coatings for engineering bioactive interfaces. Colloids Surf. B Biointerfaces 205, 111851 (2021).

PubMed  Article  Google Scholar 

Ejima, H. et al. One-step assembly of coordination complexes for versatile film and particle engineering. Science 341, 154–157 (2013).

PubMed  Article  Google Scholar 

Lee, J. et al. Chemical sporulation and germination: cytoprotective nanocoating of individual mammalian cells with a degradable tannic acid-FeIII complex. Nanoscale 7, 18918–18922 (2015).

PubMed  Article  Google Scholar 

Park, T. et al. Artificial spores: immunoprotective nanocoating of red blood cells with supramolecular ferric ion-tannic acid complex. Polymers 9, 140 (2017).

PubMed Central  Article  Google Scholar 

Li, X. et al. Assembly of metal-phenolic/catecholamine networks for synergistically anti-inflammatory, antimicrobial, and anticoagulant coatings. ACS Appl Mater. Interfaces 10, 40844–40853 (2018).

PubMed  Article  Google Scholar 

He, Q. et al. Safeguarding osteointegration in diabetic patients: a potent “chain armor” coating for scavenging ROS and macrophage reprogramming in a microenvironment-responsive manner. Adv. Funct. Mater. 31, 2101611 (2021).

Article  Google Scholar 

Park, J. H. et al. A cytoprotective and degradable metal-polyphenol nanoshell for single-cell encapsulation. Angew. Chem. Int. Ed. 53, 12420–12425 (2014).

Article  Google Scholar 

Fan, G., Wasuwanich, P., Rodriguez-Otero, M. R. & Furst, A. L. Protection of anaerobic microbes from processing stressors using metal-phenolic networks. J. Am. Chem. Soc. 144, 2438–2443 (2021).

PubMed  Article  Google Scholar 

Bartosh, T. J. et al. Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc. Natl Acad. Sci. USA 107, 13724–13729 (2010).

PubMed  PubMed Central  Article  Google Scholar 

Tietze, S. et al. Spheroid culture of mesenchymal stromal cells results in morphorheological properties appropriate for improved microcirculation. Adv. Sci. 6, 1802104 (2019).

Article  Google Scholar 

Cesarz, Z. & Tamama, K. Spheroid culture of mesenchymal stem cells. Stem Cells Int. 2016, 9176357 (2016).

PubMed  Article  Google Scholar 

Ozawa, H. & Haga, M. A. Soft nano-wrapping on graphene oxide by using metal-organic network films composed of tannic acid and Fe ions. Phys. Chem. Chem. Phys. 17, 8609–8613 (2015).

PubMed  Article  Google Scholar 

Rahim, M. A. et al. Coordination-driven multistep assembly of metal–polyphenol films and capsules. Chem. Mater. 26, 1645–1653 (2014).

Article  Google Scholar 

Liu, K., Dai, L. & Li, C. A lignocellulose-based nanocomposite hydrogel with pH-sensitive and potent antibacterial activity for wound healing. Int. J. Biol. Macromol. 191, 1249–1254 (2021).

PubMed  Article  Google Scholar 

Wang, Y., Chen, S., Zhao, S., Chen, Q. & Zhang, J. Interfacial coordination assembly of tannic acid with metal ions on three-dimensional nickel hydroxide nanowalls for efficient water splitting. J. Mater. Chem. A. 8, 15845–15852 (2020).

Article  Google Scholar 

Lin, Z. et al. Luminescent metal-phenolic networks for multicolor particle labeling. Angew. Chem. Int. Ed. 60, 24968–24975 (2021).

Article  Google Scholar 

Sandholm, L. Proteases and their inhibitors in chronic inflammatory periodontal disease. J. Clin. Periodontol. 13, 19–26 (1986).

PubMed  Article  Google Scholar 

Chen, J. et al. Programmable permeability of metal–phenolic network microcapsules. Chem. Mater. 32, 6975–6982 (2020).

Article  Google Scholar 

Ponta, H., Sherman, L. & Herrlich, P. A. CD44: from adhesion molecules to signalling regulators. Nat. Rev. Mol. Cell Biol. 4, 33–45 (2003).

PubMed  Article  Google Scholar 

Sies, H. Oxidative stress: oxidants and antioxidants. Exp. Physiol. 82, 291–295 (1997).

PubMed  Article  Google Scholar 

Chambers, I. & Tomlinson, S. R. The transcriptional foundation of pluripotency. Development 136, 2311–2322 (2009).

PubMed  PubMed Central  Article  Google Scholar 

Ishikawa, I. et al. Induction of the immune response to periodontopathic bacteria and its role in the pathogenesis of periodontitis. Periodontol. 2000. 14, 79–111 (1997).

PubMed  Article  Google Scholar 

Enersen, M., Nakano, K. & Amano, A. Porphyromonas gingivalis fimbriae. J. Oral. Microbiol. 5, 20265 (2013).

Article  Google Scholar 

Pan, C. et al. Porphyromonas gingivalis can invade periodontal ligament stem cells. BMC Microbiol. 17, 38 (2017).

PubMed  PubMed Central  Article  Google Scholar 

Yilmaz, O., Verbeke, P., Lamont, R. J. & Ojcius, D. M. Intercellular spreading of Porphyromonas gingivalis infection in primary gingival epithelial cells. Infect. Immun. 74, 703–710 (2006).

PubMed  PubMed Central  Article  Google Scholar 

Kuboniwa, M. et al. P. gingivalis accelerates gingival epithelial cell progression through the cell cycle. Microbes Infect. 10, 122–128 (2008).

PubMed  Article  Google Scholar 

Mao, S. et al. Intrinsic apoptotic pathways of gingival epithelial cells modulated by Porphyromonas gingivalis. Cell Microbiol. 9, 1997–2007 (2007).

PubMed  PubMed Central  Article  Google Scholar 

Dong, G. et al. Antimicrobial and anti-biofilm activity of tannic acid against Staphylococcus aureus. Nat. Prod. Res. 32, 2225–2228 (2018).

PubMed  Article  Google Scholar 

Silva, N. et al. Host response mechanisms in periodontal diseases. J. Appl Oral. Sci. 23, 329–355 (2015).

PubMed  Pub

留言 (0)

沒有登入
gif